98%
921
2 minutes
20
For the functional analysis of insect genes as well as for the production of recombinant proteins for biomedical use, clonal transgenic silkworms are very useful. We examined if they could be produced in the parthenogenetic strain that had been maintained for more than 40years as a female line in which embryogenesis is induced with nearly 100% efficiency by a heat shock treatment of unfertilized eggs. All individuals have identical female genotype. Silkworm transgenesis requires injection of the DNA constructs into the non-diapausing eggs at the preblastodermal stage of embryogenesis. Since our parthenogenetic silkworms produce diapausing eggs, diapause programing was eliminated by incubating ovaries of the parthenogenetic strain in standard male larvae. Chorionated eggs were dissected from the implants, activated by the heat shock treatment and injected with the transgene construct. Several transgenic individuals occurred in the daughter generation. Southern blotting analysis of two randomly chosen transgenic lines VTG1 and VTG14 revealed multiple transgene insertions. Insertions found in the parental females were transferred to the next generation without any changes in their sites and copy numbers, suggesting that transgenic silkworms can be maintained as clonal strains with homozygous transgenes. Cryopreservation was developed for the storage of precious genotypes. As shown for the VTG1 and VTG14 lines, larval ovaries can be stored in DMSO at the temperature of liquid nitrogen, transferred to Grace's medium during defrosting, and then implanted into larvae of either sex of the standard silkworm strains C146 and w1-pnd. Chorionated eggs, which developed in the implants, were dissected and activated by the heat shock to obtain females (nearly 100% efficiency) or by a cold shock to induce development to both sexes in 4% of the eggs. It was then possible to establish bisexual lines homozygous for the transgene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinsphys.2015.06.011 | DOI Listing |
J Invertebr Pathol
August 2025
State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China. Electronic address:
Pébrine disease, caused by the microsporidium Nosema bombycis, represents a significant challenge to the sericulture industry. To enhance the resistance of silkworm, we developed a transgenic strain (designated N-F12) expressing a single-chain fragment variable antibody F12 (scFvF12), targeting the critical transmembrane protein NbTMP1 of N. bombycis.
View Article and Find Full Text PDFBiol Futur
August 2025
UF/IFAS Tropical Research and Education Centre, Homestead, Florida, USA.
RNA interference (RNAi) has emerged as a promising strategy for controlling insect pests, offering precise and environmentally sustainable alternatives to traditional pest control methods. By introducing double-stranded RNA (dsRNA) that specifically targets essential genes involved in pest survival, RNAi disrupts gene expression in target organisms. Various delivery methods, including topical application, transgenic plants, and nanoparticles, have been developed to enhance the effective administration of dsRNA.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan.
In general, the silkworm, , has a diapause trait in its eggs. Therefore, transgenic silkworm can be produced by embryonic microinjection using eggs laid by a non-diapause strain in In this study, we performed microinjection using eggs of diapause strains which have good characteristics for industrial use, such as a big cocoon, thin and smooth silk, and tolerance against disease due to the growing industrial use of transgenic silkworms. For the conversion of egg diapause traits from diapause to non-diapause types, we used anti-serum against the diapause hormone of (BmDH), which was injected into maternal pupae, producing non-diapause eggs at a high rate.
View Article and Find Full Text PDFPest Manag Sci
August 2025
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Background: Lipid metabolism plays a critical role in maintaining energy homeostasis during various physiological processes in insects. Diacylglycerol O-acyltransferase-1 (DGAT1) is associated with the synthesis of triacylglycerol (TAG), a process that is necessary for the absorption of dietary fats and the storage of fat in mammals. However, the biological roles of DGAT1 in insects remain largely unknown.
View Article and Find Full Text PDFInsect Sci
August 2025
Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
Transgenic technology is crucial for advancing various areas of biological research. In silkworms, the traditional transgenic method relies on embryo microinjection, which is a labor-intensive process with limited efficiency and high technical barriers. To overcome these challenges, we developed an Ovary-Targeted Nucleic Acid Delivery Peptide, OT-NADPS, based on the Receptor-Mediated Ovary Transduction of Cargo system (ReMOT) by innovative integration.
View Article and Find Full Text PDF