Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Pébrine disease, caused by the microsporidium Nosema bombycis, represents a significant challenge to the sericulture industry. To enhance the resistance of silkworm, we developed a transgenic strain (designated N-F12) expressing a single-chain fragment variable antibody F12 (scFvF12), targeting the critical transmembrane protein NbTMP1 of N. bombycis. The antibody was fused with the ubiquitination tag, the F-box domain at the N-terminal of Slmb protein (NSlmb), facilitating the degradation of NbTMP1 via the host's ubiquitin-proteasome system (UPS). Western blot analysis confirmed that the recombinant NSlmb::scFvF12 antibody can specifically recognize and label NbTMP1, leading to its degradation. Additionally, the proliferation of N. bombycis was significantly suppressed in N-F12 transgenic cells. Transgenic silkworms expressing N-F12 exhibited obvious resistance to N. bombycis, achieving higher survival rates without compromising key economic traits. This study demonstrates a novel strategy for pathogen resistance by utilizing the host's UPS to degrade pathogen proteins, with potential applications in sericulture and broader host-pathogen systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2025.108438 | DOI Listing |