The oncogene c-Jun impedes somatic cell reprogramming.

Nat Cell Biol

1] Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China [2] Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South

Published: July 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oncogenic transcription factors are known to mediate the conversion of somatic cells to tumour or induced pluripotent stem cells (iPSCs). Here we report c-Jun as a barrier for iPSC formation. c-Jun is expressed by and required for the proliferation of mouse embryonic fibroblasts (MEFs), but not mouse embryonic stem cells (mESCs). Consistently, c-Jun is induced during mESC differentiation, drives mESCs towards the endoderm lineage and completely blocks the generation of iPSCs from MEFs. Mechanistically, c-Jun activates mesenchymal-related genes, broadly suppresses the pluripotent ones, and derails the obligatory mesenchymal to epithelial transition during reprogramming. Furthermore, inhibition of c-Jun by shRNA, dominant-negative c-Jun or Jdp2 enhances reprogramming and replaces Oct4 among the Yamanaka factors. Finally, Jdp2 anchors 5 non-Yamanaka factors (Id1, Jhdm1b, Lrh1, Sall4 and Glis1) to reprogram MEFs into iPSCs. Our studies reveal c-Jun as a guardian of somatic cell fate and its suppression opens the gate to pluripotency.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb3193DOI Listing

Publication Analysis

Top Keywords

somatic cell
8
stem cells
8
mouse embryonic
8
c-jun
7
oncogene c-jun
4
c-jun impedes
4
impedes somatic
4
cell reprogramming
4
reprogramming oncogenic
4
oncogenic transcription
4

Similar Publications

Mediastinal masses often present acutely as medical emergencies, necessitating prompt and accurate diagnosis. Imaging-guided fine needle aspiration cytology (FNAC) plays a pivotal role in rapidly identifying rare mediastinal tumours and differentiating them from other potential aetiologies, enabling timely intervention. Primary mediastinal germ cell tumours (PMGCTs) constitute approximately 15% of adult mediastinal neoplasms.

View Article and Find Full Text PDF

Transcranial alternating current stimulation (tACS) enables non-invasive modulation of brain activity, holding promise for cognitive research and clinical applications. However, it remains unclear how the spiking activity of cortical neurons is modulated by specific electric field (E-field) distributions. Here, we use a multi-scale computational framework that integrates an anatomically accurate head model with morphologically realistic neuron models to simulate the responses of layer 5 pyramidal cells (L5 PCs) to the E-fields generated by conventional M1-SO tACS.

View Article and Find Full Text PDF

[New insights from basic research on testicular germ cell tumors and updated tumorigenesis].

Urologie

September 2025

Klinik für Urologie, Medizinisches Forschungszentrum, Urologisches Forschungslabor, Translationale UroOnkologie, Medizinische Fakultät und Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Deutschland.

Type II testicular germ cell tumors (GCT) are the most common malignant disease in young men, with a steadily increasing incidence. They originate from germ cell neoplasia in situ and are classified into seminomas (SE) and nonseminomas (NS). The NS subtype embryonal carcinoma (EC) exhibits stem cell-like characteristics and, thus, has the potential to differentiate into teratomas (TE) or extraembryonic tissues, such as yolk-sac tumors (YST) and choriocarcinomas (CC).

View Article and Find Full Text PDF

Somatic embryogenesis (SE) is an in vitro mass propagation system widely employed in plant breeding programs. However, its efficiency in many forest species remains limited due to their recalcitrance. SE relies on the induction of somatic cell reprogramming into embryogenic pathways, a process influenced by transcriptomic changes regulated, among other factors, by epigenetic modifications such as DNA methylation, histone methylation, and histone acetylation.

View Article and Find Full Text PDF

Moss BRCA2 lacking the canonical DNA-binding domain promotes homologous recombination and binds to DNA.

Nucleic Acids Res

September 2025

Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000 Versailles, France.

BRCA2 is crucial for mediating homology-directed DNA repair (HDR) through its binding to single-stranded DNA (ssDNA) and the recombinases RAD51 and DMC1. Most BRCA2 orthologs have a canonical DNA-binding domain (DBD) with the exception of Drosophila melanogaster. It remains unclear whether such a noncanonical BRCA2 variant without DBD possesses a DNA-binding activity.

View Article and Find Full Text PDF