Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source. Here, we generated an S. gordonii ΔarcD mutant to explore the role of ArcD in physiological homeostasis and bacterial cross-feeding. First, we confirmed that S. gordonii ArcD plays crucial roles for mediating arginine uptake and promoting bacterial growth, particularly under arginine-limited conditions. Next, metabolomic profiling and transcriptional analysis of the ΔarcD mutant revealed that deletion of this gene caused intracellular accumulation of ornithine leading to malfunction of the ADS and suppression of de novo arginine biosynthesis. The mutant strain also showed increased susceptibility to low pH stress due to reduced production of ammonia. Finally, accumulation of Fusobacterium nucleatum was found to be significantly decreased in biofilm formed by the ΔarcD mutant as compared with the wild-type strain, although ornithine supplementation restored fusobacterium biovolume in dual-species biofilms with the ΔarcD mutant and also enhanced single species biofilm development by F. nucleatum. Our results are the first direct evidence showing that S. gordonii ArcD modulates not only alkali and energy production but also interspecies interaction with F. nucleatum, thus initiating a middle stage of periodontopathic biofilm formation, by metabolic cross-feeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571851PMC
http://dx.doi.org/10.1074/jbc.M115.644401DOI Listing

Publication Analysis

Top Keywords

Δarcd mutant
16
arginine-ornithine antiporter
8
antiporter arcd
8
biofilm development
8
streptococcus gordonii
8
gordonii arcd
8
gordonii
6
arcd
5
arginine
5
mutant
5

Similar Publications

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

Metabolic benefits conferred by duplication of the facilitated trehalose transporter in Lepidoptera.

Insect Sci

September 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China.

In addition to being one of the primary processes for the formation and expansion of gene families, gene duplication also establishes the basis for the diversity and redundancy of gene functions, providing an abundance of genetic resources and a potent adaptive potential for biological evolution. Trehalose is a high-quality carbon source and blood sugar in insects. However, recent theoretical developments suggest that mechanisms for facilitated trehalose transport in lepidopteran insects remain relatively scarce.

View Article and Find Full Text PDF

Anastrepha obliqua, a neotropical pest widely distributed in the Americas, attacks mango and other tropical fruits. In Mexico, it is controlled through integrated pest management, using the Sterile Insect Technique (SIT) as a main component. The applicability of SIT is significantly improved with the use of genetic sexing strains (GSS) that allow the possibility to release exclusively sterile males, the primary component of the technique.

View Article and Find Full Text PDF

Superinfection exclusion (SIE) is a finely tuned virus-virus interaction mechanism closely linked to the viral infection cycle. However, the mechanistic basis of SIE remains incompletely understood in plant viruses, particularly among negative-sense, single-stranded RNA viruses. In this study, we first describe the development of an efficient reverse genetics system for the plant nucleorhabdovirus Physostegia chlorotic mottle virus (PhCMoV) by codon optimisation of the large polymerase coding sequence.

View Article and Find Full Text PDF

Background: Bacillus thuringiensis Cry toxins are well known for their insecticidal properties, primarily through the formation of ion-leakage pores via α4-α5 hairpins. His178 in helix 4 of the Cry4Aa mosquito-active toxin has been suggested to play a crucial role in its biotoxicity.

Objective: This study aimed to investigate the functional importance of Cry4Aa-His178 through experimental and computational analyses.

View Article and Find Full Text PDF