Background: Kostmann syndrome is an autosomal recessive disorder caused by a mutation of the () gene, and characterized by low number of neutrophils and increased susceptibility to infections. Additionally, Kostmann syndrome is known to be complicated by periodontitis, though the etiological molecular basis remains unclear. We previously reported findings showing that junctional adhesion molecule 1 (JAM1), a tight junction-associated protein, has an important role to maintain epithelial barrier function in gingival tissues, which prevents penetration of bacterial virulence factors, such as lipopolysaccharide (LPS) and peptidoglycan (PGN).
View Article and Find Full Text PDFSolute carrier family 37 member 4 (SLC37A4) is known to regulate glucose-6-phosphate transport from cytoplasm to the lumen of the endoplasmic reticulum, which serves to maintain glucose homeostasis. Glycogen storage disease type 1b (GSD1b) is caused by a mutation of SLC37A4, leading to a glycogenolysis defect. Although GSD1b cases are known to be complicated by periodontitis, the etiological molecular basis remains unclear.
View Article and Find Full Text PDFDiabetes Obes Metab
October 2024
Aim: To assess the direct effect of intensive glycaemic control on periodontal tissues in patients with diabetes mellitus.
Materials And Methods: Twenty-nine patients with type 2 diabetes were enrolled and hospitalized to receive a 2-week intensive glycaemic control regimen. We observed and analysed the systemic and oral disease indicators before and after treatment and clarified the indicators related to periodontal inflammation.
The major oral odor compound methyl mercaptan (CHSH) is strongly associated with halitosis and periodontitis. CHSH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CHSH-producing oral bacteria and their interactions is limited.
View Article and Find Full Text PDFAtherosclerosis is a life-threatening disease associated with morbidity and mortality in patients with type 2 diabetes (T2D). This study aimed to characterize a salivary signature of atherosclerosis based on evaluation of carotid intima-media thickness (IMT) to develop a non-invasive predictive tool for diagnosis and disease follow-up. Metabolites in saliva and plasma samples collected at admission and after treatment from 25 T2D patients hospitalized for 2 weeks to undergo medical treatment for diabetes were comprehensively profiled using metabolomic profiling with gas chromatography-mass spectrometry.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2021
Recent studies have shown phenotypic and metabolic heterogeneity in related species including , a typical oral commensal bacterium, , a cariogenic bacterium, and , which functions as an accessory pathogen in periodontopathic biofilm. In this study, metabolites characteristically contained in the saliva of individuals with good oral hygiene were determined, after which the effects of an identified prebiotic candidate, D-tagatose, on phenotype, gene expression, and metabolic profiles of those three key bacterial species were investigated. Examinations of the saliva metabolome of 18 systemically healthy volunteers identified salivary D-tagatose as associated with lower dental biofilm abundance in the oral cavity (Spearman's correlation coefficient; = -0.
View Article and Find Full Text PDFFront Mol Biosci
September 2021
Periodontitis is an inflammatory disorder caused by disintegration of the balance between the periodontal microbiome and host response. While growing evidence suggests links between periodontitis and various metabolic disorders including type 2 diabetes (T2D), non-alcoholic liver disease, and cardiovascular disease (CVD), which often coexist in individuals with abdominal obesity, factors linking periodontal inflammation to common metabolic alterations remain to be fully elucidated. More detailed characterization of metabolomic profiles associated with multiple oral and cardiometabolic traits may provide better understanding of the complexity of oral-systemic crosstalk and its underlying mechanism.
View Article and Find Full Text PDFObjectives: Phosphoryl oligosaccharides of calcium (POs-Ca) are a highly soluble calcium source and can keep the solubility of calcium and fluoride ions. The aim of this study was to investigate the effect of calcium (from POs-Ca) and fluoride ions penetrate into subsurface enamel lesions in vitro.
Design: Demineralized bovine enamel slabs were remineralizedin vitro for 24 h at 37 °C with artificial saliva (AS) containing POs-Ca and various fluoride concentrations (0-100 ppm), or AS containing different levels of POs-Ca adjusted to a Ca/P ratio of 0.
Many human infections are polymicrobial in origin, and interactions among community inhabitants shape colonization patterns and pathogenic potential . Periodontitis, which is the sixth most prevalent infectious disease worldwide , ensues from the action of dysbiotic polymicrobial communities . The keystone pathogen Porphyromonas gingivalis and the accessory pathogen Streptococcus gordonii interact to form communities in vitro and exhibit increased fitness in vivo .
View Article and Find Full Text PDFOnset of chronic periodontitis is associated with an aberrant polymicrobial community, termed dysbiosis. Findings regarding its etiology obtained using high-throughput sequencing technique suggested that dysbiosis holds a conserved metabolic signature as an emergent property. The purpose of this study was to identify robust biomarkers for periodontal inflammation severity.
View Article and Find Full Text PDFPorphyromonas gingivalis is deeply involved in the pathogenesis of marginal periodontitis, and recent findings have consolidated its role as an important and unique pathogen. This bacterium has a unique dual lifestyle in periodontal sites including subgingival dental plaque (biofilm) and gingival cells, as it has been clearly shown that P. gingivalis is able to exert virulence using completely different tactics in each environment.
View Article and Find Full Text PDFArginine is utilized by the oral inhabitant Streptococcus gordonii as a substrate of the arginine deiminase system (ADS), eventually producing ATP and NH3, the latter of which is responsible for microbial resistance to pH stress. S. gordonii expresses a putative arginine-ornithine antiporter (ArcD) whose function has not been investigated despite relevance to the ADS and potential influence on inter-bacterial communication with periodontal pathogens that utilize amino acids as a main energy source.
View Article and Find Full Text PDF