Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4484386PMC
http://dx.doi.org/10.1101/gr.186379.114DOI Listing

Publication Analysis

Top Keywords

germline transmission
16
gene targeting
8
targeted mutagenesis
8
high-throughput sequencing
8
transmission data
8
crispr/cas9
5
high-throughput
4
high-throughput gene
4
targeting phenotyping
4
zebrafish
4

Similar Publications

De novo inherited Xq25 deletion: hints from preimplantation genetic testing in alobar holoprosencephaly.

Eur J Obstet Gynecol Reprod Biol

August 2025

Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000 Guangdong, China; Shenzhen Clinical Research Center for Obstetrics & Gynecology and Reproductive System Diseases, Shenzhen 518000 Guangdong, China. Electronic address: szfyart

Objective: This study investigates the association between alobar holoprosencephaly (HPE) and de novo germline microdeletions in the Xq25 region. To develop a Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) based workflow enabling high-resolution preimplantation detection of sub-Mb microdeletions, overcoming the >1 Mb resolution limit of conventional whole genome amplification(WGA) copy number variation(CNV) sequencing to identify causative Xq25 variants and prevent pathogenic microdeletion transmission.

Methods: This study presents a clinical case involving a couple with an adverse obstetric history accompanied by two occurrences of HPE.

View Article and Find Full Text PDF

Replication competition drives the selective mtDNA inheritance in Drosophila ovary.

Cell Rep

September 2025

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Purifying selection that limits the transmission of harmful mitochondrial DNA (mtDNA) mutations has been observed in both human and animal models. Yet, the precise mechanism underlying this process remains undefined. Here, we present a highly specific and efficient in situ imaging method capable of visualizing mtDNA variants that differ by only a few nucleotides at single-molecule resolution in Drosophila ovaries.

View Article and Find Full Text PDF

Hidden within host cells, the endosymbiont is the most prevalent bacterial infection in the animal kingdom. Scientific breakthroughs over the past century yielded fundamental mechanisms by which controls arthropod reproduction to shape dynamic ecological and evolutionary trajectories. However, the structure and spatial organization of symbiont machineries that underpin intracellular colonization and orchestrate maternal inheritance remain unknown.

View Article and Find Full Text PDF

Endogenous Retroviruses in Host-Virus Coevolution: From Genomic Domestication to Functional Innovation.

Genes (Basel)

August 2025

Key Laboratory of Cell and Molecular Intelligent Design and Development of Zhejiang Province, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.

Endogenous retroviruses (ERVs) are remnants of retroviral infections that have become stably integrated into host germline genomes. Far beyond passive genomic elements, ERVs actively shape host evolution through complex mechanisms involving genetic innovation, immune modulation, and species adaptation. This review provides a comprehensive synthesis of ERV biology, highlighting recent advances in their classification, amplification mechanisms, and epigenetic silencing.

View Article and Find Full Text PDF

Loss of col4a1 in zebrafish recapitulates the cerebrovascular phenotypes associated with monogenic cerebral small vessel disease.

Matrix Biol

August 2025

Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and the University of Manchester, Manchester M6

Cerebral small vessel disease (cSVD) is a major cause of vascular dementia and stroke. Our understanding of cSVD pathophysiology is incomplete and our ability to treat patients is limited. Pathogenic variants in type IV collagen alpha 1 (COL4A1) cause a monogenic form of cSVD with variable age of onset, via disturbance of cerebrovascular basement membranes.

View Article and Find Full Text PDF