Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, an indoor/outdoor monitoring program was carried out in a gymnasium at the University of Leon, Spain. The main goal was a characterization of aerosol size distributions in a university gymnasium under different conditions and sports activities (with and without magnesia alba) and the study of the mass fraction deposited in each of the parts of the respiratory tract. The aerosol particles were measured in 31 discrete channels (size ranges) using a laser spectrometer probe. Aerosol size distributions were studied under different conditions: i) before sports activities, ii) activities without using magnesia alba, iii) activities using magnesia alba, iv) cleaning procedures, and v) outdoors. The aerosol refractive index and density indoors were estimated from the aerosol composition: 1.577-0.003i and 2.055 g cm(-3), respectively. Using the estimated density, the mass concentration was calculated, and the evolution of PM1, PM2.5 and PM10 for different activities was assessed. The quality of the air in the gymnasium was strongly influenced by the use of magnesia alba (MgCO3) and the number of gymnasts who were training. Due to the climbing chalk and the constant process of resuspension, average PM10 concentrations of over 440 μg m(-3) were reached. The maximum daily concentrations ranged from 500 to 900 μg m(-3). Particle size determines the place in the respiratory tract where the deposition occurs. For this reason, the inhalable, thoracic, tracheobronchial and respirable fractions were assessed for healthy adults and high risk people, according to international standards. The estimations show that, for healthy adults, up to 300 μg m(-3) can be retained by the trachea and bronchi, and 130 μg m(-3) may reach the alveolar region. The different physical activities and the attendance rates in the sports facility have a significant influence on the concentration and size distributions observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2015.03.118DOI Listing

Publication Analysis

Top Keywords

size distributions
16
magnesia alba
16
μg m-3
16
aerosol size
12
activities magnesia
12
conditions sports
8
sports activities
8
respiratory tract
8
healthy adults
8
size
6

Similar Publications

Reversible increased basement membrane permeability and calcium ion redistribution facilitate ultrasound-enhanced transdermal drug delivery efficiency.

Int J Pharm

September 2025

Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, People's Republic of China; Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, People's Republic of China. Electronic address:

Background: Ultrasound-assisted transdermal drug delivery, or sonophoresis, enhances skin permeability, offering a non-invasive alternative for drug administration. However, its clinical application remains limited because of an insufficient understanding of its underlying mechanisms and optimal parameters. This study investigates the factors influencing ultrasound-enhanced drug absorption and examines its biological effects on skin structures and HaCaT cells, providing a comprehensive analysis of its mechanisms.

View Article and Find Full Text PDF

Subcutaneous administration of the sphingosine kinase 2 inhibitor ABC294640 has no metabolic benefits in high fat diet-induced obesity in male mice.

Life Sci

September 2025

Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84, Lund, Sweden; Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, 221 84, Lund, Sweden. Electronic address:

Aims: Experimental evidence suggests an important role for sphingosine-1-phosphate (S1P) and its generating enzymes sphingosine kinase 1/2 (SphK1/2) in obesity. We and others have shown that plasma S1P levels are elevated in obese mice and humans. Preclinical studies suggest that genetic SphK2 ablation in mice protects from age- and diet-induced obesity and metabolic dysfunction.

View Article and Find Full Text PDF

Background: Huntington disease-like 2 (HDL2) is an autosomal dominant disorder caused by an abnormal CAG/CTG repeat in exon 2A of junctophilin-3. This is the most common Huntington's Disease phenocopy and is characterized by psychiatric, cognitive, and movement disorders. This study aimed to describe the clinical phenotype of HDL2 patients in Brazil and compare the findings with those in the literature.

View Article and Find Full Text PDF

Synergistic modification of chestnut powder via Lactobacillus plantarum and pullulanase: Promotion of resistant starch formation and structural-functional enhancement.

Carbohydr Polym

November 2025

National Key Laboratory for Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Chestnut (Castanea mollissima Blume) is a nutritionally dense food, notably rich in starch, making it an important natural source of carbohydrates and energy for human diets. However, its high content of rapidly digestible starch (RDS) limits its use in low-glycemic-index (GI) food products. This study developed a synergistic bioprocess combining Lactobacillus plantarum fermentation and pullulanase-catalyzed debranching to enhance the nutritional and structural characteristics of chestnut powder.

View Article and Find Full Text PDF

In vitro formation and growth of glycogen: experimental verification of theoretical predictions.

Carbohydr Polym

November 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; Co-Innovation Centre for Modern Production Technology of Grain Crops, Yangzhou Univ

Glycogen is a complex branched glucose polymer that serves as energy reservoir in animals and some bacteria; it has also been synthesized in vitro. It comprises small β particles linked in large aggregates termed α particles. Theory, based on the evolutionary processes which cause these particles to be formed, suggests that if all ingredients for in vitro particle synthesis were added to a suspension of α particles, then these will grow to a steady-state size distribution, after which new particles will be formed.

View Article and Find Full Text PDF