98%
921
2 minutes
20
In this work we study the influence of adding nano-silica (SiO2, Nyasil™) and aminopropyl (-(CH2)3-NH2,) functionalized silica nanoparticles (Stoga) during the synthesis of calcium-silicate-hydrate (C-S-H gel). Characterization by solid state (29)Si NMR and ATR-FTIR spectroscopy showed that the addition of both particle types increases the average length of the silicate chains in C-S-H gel being this effect slightly more important in the case of Stoga particles. In addition, (13)C NMR and XPS confirmed that the aminopropyl chain remains in the final product cleaved to silicon atoms at the end of the silicate chain of C-S-H gel whereas XRD measurements showed that this result in an increment in the basal distance compared with ordinary CSH. In addition, the dynamics of water within the pores of C-S-H gel was analyzed by broadband dielectric spectroscopy. We observed that water confined in C-S-H formed with the addition of nanoparticles is faster than that in plain C-S-H which can be related to a different porous structure in these materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2015.02.066 | DOI Listing |
Environ Res
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China. Electronic address: yubiao
In order to promote the development and application of low-carbon cement varieties and the recycling of industrial solid waste, this study used iron tailings and fluorogypsum to prepare iron-rich belite-sulfoaluminate cement (I-BCSA). The suitable conditions for the preparation of I-BCSA in this system were with an excessive addition of 6 wt% of SO in the raw meal, at a calcination temperature of 1250 °C for 1.5 h, and an added-gypsum content of 15 wt%.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
College of Urban and Rural Construction, Shanxi Agricultural University, Jinzhong 030800, China.
To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM content, FA content, CG aggregate replacement rate, and water-to-binder ratio on workability, mechanical properties, and frost resistance durability were systematically investigated through orthogonal experiments, with the underlying micro-mechanisms revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that workability is predominantly governed by the water-to-binder ratio, while the micro-aggregate effect of FA significantly enhances fluidity.
View Article and Find Full Text PDFLangmuir
August 2025
College of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China.
The swift expansion of the worldwide magnesium industry has resulted in substantial accumulation of magnesium slag (MS) as a byproduct of the magnesium metal smelting process, presenting a growing environmental hazard. To effectively address the issue of MS resource usage, the synergistic activation impact among MS, fly ash (FA), and desulfurized gypsum (DG) was examined utilizing response surface methodology (RSM). This study calculated the appropriate ratio of cementitious materials and investigated the hydration characteristics of magnesium-slag-based low-carbon cementitious materials (MSLCM).
View Article and Find Full Text PDFEnviron Res
August 2025
School of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China; Key Laboratory of Ecological Restoration Technology in Abandoned Mining Area in Liaoning, Liaoning Technical University, Fuxin, 123000, China.
The brittle failure characteristics of backfill materials have limited their engineering applications. Herein, we propose a novel synergistic enhancement strategy to improve these characteristics. We prepared coal gangue-based backfill material (SGBS-PsFs) using industrial solid waste carbide slag to activate coal gangue powder and slag, to which polypropylene fibers (PP) and silica fume (SF) were introduced for synergistic enhancement.
View Article and Find Full Text PDFAcc Mater Res
July 2025
Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga, Spain.
The production of cement is a key indicator of a region's level of development. As such, its use is essential for any society aiming to create healthy, comfortable, safe and secure living and working environments. However, these benefits come at a price; Portland cement production accounts for ≈8% of the total anthropogenic CO emissions.
View Article and Find Full Text PDF