Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Responses of biodiversity to changes in both land cover and climate are recognized [1] but still poorly understood [2]. This poses significant challenges for spatial planning as species could shift, contract, expand, or maintain their range inside or outside protected areas [2-4]. We examine this problem in Borneo, a global biodiversity hotspot [5], using spatial prioritization analyses that maximize species conservation under multiple environmental-change forecasts. Climate projections indicate that 11%-36% of Bornean mammal species will lose ≥ 30% of their habitat by 2080, and suitable ecological conditions will shift upslope for 23%-46%. Deforestation exacerbates this process, increasing the proportion of species facing comparable habitat loss to 30%-49%, a 2-fold increase on historical trends. Accommodating these distributional changes will require conserving land outside existing protected areas, but this may be less than anticipated from models incorporating deforestation alone because some species will colonize high-elevation reserves. Our results demonstrate the increasing importance of upland reserves and that relatively small additions (16,000-28,000 km(2)) to the current conservation estate could provide substantial benefits to biodiversity facing changes to land cover and climate. On Borneo, much of this land is under forestry jurisdiction, warranting targeted conservation partnerships to safeguard biodiversity in an era of global change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2014.11.067DOI Listing

Publication Analysis

Top Keywords

targeted conservation
8
safeguard biodiversity
8
biodiversity hotspot
8
changes land
8
land cover
8
cover climate
8
protected areas
8
species will
8
biodiversity
5
species
5

Similar Publications

Branched-chain amino acid aminotransferases (BCATs) catalyze both the final anabolic step and the initial catabolic step of branched-chain amino acids (BCAAs), which are pivotal for the formation of plant branched-chain volatiles (BCVs). However, the members of BCAT family in apple (Malus domestica Borkh.) remain poorly characterized.

View Article and Find Full Text PDF

The peptidoglycan-binding domain of a mycobacterial prophage-encoded LysinB reveals diverse approaches for domain conservation in hydrolases.

Int J Biol Macromol

September 2025

Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, 110019, New Delhi, India. Electronic address:

Mycobacteriophage-encoded LysinB enzymes target mycolyl ester linkages in mycolyl-arabinogalactan-peptidoglycan of mycobacterium hosts and generally exhibit a globular architecture. Here, we present the structural and functional characterization of a novel Mycobacterium fortuitum prophage-encoded modular LysinB (LysinB_MF), which contains the α/β hydrolase domain and a distinct peptidoglycan-binding domain (PGBD). The enzyme's active site features the conserved Ser-Asp-His catalytic triad common to esterases and forms a funnel-like topology.

View Article and Find Full Text PDF

Truncating Mutations in BBS10 and BBS12 Impair Proteostasis and Ciliary Architecture in Bardet-Biedl Syndrome.

Exp Eye Res

September 2025

Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu

Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.

View Article and Find Full Text PDF

Permafrost degradation is accelerating across the Arctic, posing growing risks to cultural heritage (CH) sites. This study presents the first archipelago-scale hazard assessment of CH to retrogressive thaw slumps (RTS) and thermo-erosion gullies (TEG) in Svalbard, one of the fastest-warming regions globally. By overlaying recent RTS and TEG inventories with the spatial distribution of protected CH sites, we quantify hazard exposure for 55.

View Article and Find Full Text PDF

An oomycete effector targets host calmodulin to suppress plant immunity.

Plant J

September 2025

National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.

Tropical and subtropical fruit trees face serious threats of oomycete-caused plant diseases. However, the molecular mechanism by which oomycete pathogens suppress the immunity of these fruit trees remains largely unclear. Effectors play a crucial role in the pathogenesis of plant pathogenic oomycetes.

View Article and Find Full Text PDF