98%
921
2 minutes
20
Nitrous acid (HONO) is an important hydroxyl (OH) radical source that is formed on both ground and aerosol surfaces in the well-mixed boundary layer. Recent studies report the release of HONO from nonacidic soils, although it is unclear how soil that is more basic than the pKa of HONO (∼ 3) is capable of protonating soil nitrite to serve as an atmospheric HONO source. Here, we used a coated-wall flow tube and chemical ionization mass spectrometry (CIMS) to study the pH dependence of HONO uptake onto agricultural soil and model substrates under atmospherically relevant conditions (1 atm and 30% relative humidity). Experiments measuring the evolution of HONO from pH-adjusted surfaces treated with nitrite and potentiometric titrations of the substrates show, to our knowledge for the first time, that surface acidity rather than bulk aqueous pH determines HONO uptake and desorption efficiency on soil, in a process controlled by amphoteric aluminum and iron (hydr)oxides present. The results have important implications for predicting when soil nitrite, whether microbially derived or atmospherically deposited, will act as a net source or sink of atmospheric HONO. This process represents an unrecognized mechanism of HONO release from soil that will contribute to HONO emissions throughout the day.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4284574 | PMC |
http://dx.doi.org/10.1073/pnas.1418545112 | DOI Listing |
Phys Chem Chem Phys
September 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja S C Mullick Road, Jadavpur, Kolkata 700032, India.
This work presents a gas-phase experimental study on the reduction of NO (nitrogen dioxide) to HONO (nitrous acid) by two atmospherically significant volatile organic compounds (VOCs), namely, glycolaldehyde (Gla) and hydroxyacetone (HAc), under a simulated tropospheric condition. FTIR spectroscopic probing reveals that HONO is the only gaseous reduced product of NO in each reaction. The measured data indicate that the reactions in both cases occur in a 2 : 1 stoichiometry with respect to NO and Gla/HAc.
View Article and Find Full Text PDFRSC Adv
August 2025
Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences Hefei 230031 China.
Nitrous acid (HONO) is a vital pollutant gas and the nitrogen-containing organic compounds (NOCs) produced by its reaction are the main components of aerosols. The reaction mechanisms and kinetics of HONO and the simplest aromatic Criegee intermediate (PhCHOO) are investigated by density functional theory and transition state theory in this study. The results demonstrate that cycloaddition of HONO and PhCHOO to form heteroozonide with the highest activation energy and smallest rate constant does not easily occur.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Reactive nitrogen plays critical roles in atmospheric chemistry, climate, and geochemical cycles, yet its sources in the marine atmosphere, particularly the cause of the puzzling daytime peaks of nitrous acid (HONO), remain unexplained. Here we reveal that iodide enhances HONO production during aqueous nitrate photolysis by over tenfold under typical marine conditions. Laboratory experiments and molecular simulations confirm that HONO formation from nitrate photolysis is a surface-dependent process, and the extreme surface propensity of iodide facilitates nitrate enrichment at interfaces, reducing the solvent cage effect and promoting HONO release.
View Article and Find Full Text PDFRSC Adv
August 2025
School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 P.R. China +86 551 62901649 +86 551 62901523.
The photochemical reaction of 4-chlorobiphenyl (4-PCB) and HONO in atmospheric aqueous phase was studied by 355 nm laser flash photolysis combined with 365 nm UV steady-state irradiation technique. The steady-state study showed that the conversion rate of 4-PCB was affected by the initial concentration of 4-PCB, pH value and HONO concentration, while chloride ions had little effect on the conversion of 4-PCB. HONO produces an HO˙ attack on 4-PCB to form a 4-PCB-OH adduct with the second-order reaction rate constant of (9.
View Article and Find Full Text PDFJ Environ Sci (China)
December 2025
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China. Elec
Nitrous acid (HONO) is a crucial source of OH radicals in the troposphere, significantly enhancing secondary pollutants like secondary organic aerosols (SOA) and peroxyacetyl nitrates (PAN). While prior research has examined HONO sources and their total impacts on secondary pollution, the specific enhancement capacity of each individual HONO source remains underexplored. This study uses observational data from 2015 to 2018 for HONO, SOA, and PAN across six sites in China, combined with WRF-Chem model adding six potential HONO sources to evaluate their capacity: traffic emissions (E_traffic), soil emissions (E_soil), indoor-outdoor exchange (E_indoor), nitrate photolysis (P_nit), and NO heterogeneous reactions on aerosol and ground surfaces (Het_a, Het_g).
View Article and Find Full Text PDF