Global analysis of plasticity in turgor loss point, a key drought tolerance trait.

Ecol Lett

Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, California, 90095, USA.

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.e. 'osmotic adjustment'). We conducted the first global analysis of plasticity in Δπtlp and related traits for 283 wild and crop species in ecosystems worldwide. Δπtlp was widely prevalent but moderate (-0.44 MPa), accounting for 16% of post-drought πtlp. Thus, pre-drought πtlp was a considerably stronger predictor of post-drought πtlp across species of wild plants. For cultivars of certain crops Δπtlp accounted for major differences in post-drought πtlp. Climate was correlated with pre- and post-drought πtlp, but not Δπtlp. Thus, despite the wide prevalence of plasticity, πtlp measured in one season can reliably characterise most species' constitutive drought tolerances and distributions relative to water supply.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.12374DOI Listing

Publication Analysis

Top Keywords

post-drought πtlp
16
global analysis
8
analysis plasticity
8
turgor loss
8
key drought
8
drought tolerance
8
πtlp
8
plasticity
5
drought
5
plasticity turgor
4

Similar Publications

Drought and liming impacts of mine-impacted wetland sediments.

Ecotoxicol Environ Saf

September 2025

CanmetMINING, Natural Resources Canada, Ottawa, ON, Canada. Electronic address:

Acid mine drainage (AMD) is a serious environmental problem at legacy and active mine sites around the world. Climate associated drought and rewetting events can increase the severity of AMD impacts through oxidation and release of stored metal(loid)s and acidity from contaminated sediments. The area surrounding Sudbury, Ontario, with its massive mining and smelting complexes, appears especially vulnerable to drought-driven effects.

View Article and Find Full Text PDF

Nitrogen enhances post-drought recovery in wheat by modulating TaSnRK2.10-mediated regulation of TaNLP7.

Nat Plants

September 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

Drought stress affects plant growth and agricultural production, especially in the context of global climate change. Post-drought rehydration is crucial for plant recovery and sustained growth, yet the mechanisms underlying this process remain poorly understood. Nitrogen fertilizer plays a role in optimizing plant growth and enhancing stress resistance, but its role in post-drought recovery has not been fully elucidated.

View Article and Find Full Text PDF

Cotton ( spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction.

View Article and Find Full Text PDF

No legacy effects of severe drought on carbon and water fluxes in a Mediterranean oak forest.

Plant Biol (Stuttg)

August 2025

Research Group Modeling of Biogeochemical Systems, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany.

Severe droughts affect vegetation through several processes, such as hydraulic failure, early leaf senescence, depletion of carbon reserves, and reduced growth. These, in turn, can delay drought recovery and influence ecosystem functioning beyond the drought duration. The goal of this study is to investigate the direct response and physiological recovery of a Mediterranean oak (Quercus ilex L.

View Article and Find Full Text PDF

The regulation of stomatal movements is crucial for plants to optimize gas exchange and water balance. The plant hormone abscisic acid (ABA) triggers stomatal closure in response to drought, effectively minimizing water loss to prevent hydraulic failure. However, it significantly constrains photosynthesis, restricting plant growth and productivity.

View Article and Find Full Text PDF