Publications by authors named "Rico Ardy"

Cell atlas projects have revealed that common cell types often comprise distinct, recurrent transcriptional states, but the function and regulation of these states remain poorly understood. Here, we show that systematic activation of transcription factors can recreate such states in vitro, providing tractable models for mechanistic and functional studies. Using a scalable CRISPR activation (CRISPRa) Perturb-seq platform, we activated 1,836 transcription factors in two cell types.

View Article and Find Full Text PDF

Cell atlas projects have nominated recurrent transcriptional states as drivers of biological processes and disease, but their origins, regulation, and properties remain unclear. To enable complementary functional studies, we developed a scalable approach for recapitulating cell states using CRISPR activation (CRISPRa) Perturb-seq. Aided by a novel multiplexing method, we activated 1,836 transcription factors in two cell types.

View Article and Find Full Text PDF

Background: Increasing evidence links genetic defects affecting actin-regulatory proteins to diseases with severe autoimmunity and autoinflammation, yet the underlying molecular mechanisms are poorly understood. Dedicator of cytokinesis 11 (DOCK11) activates the small Rho guanosine triphosphatase (GTPase) cell division cycle 42 (CDC42), a central regulator of actin cytoskeleton dynamics. The role of DOCK11 in human immune-cell function and disease remains unknown.

View Article and Find Full Text PDF

Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function.

View Article and Find Full Text PDF

The WAVE regulatory complex (WRC) is crucial for assembly of the peripheral branched actin network constituting one of the main drivers of eukaryotic cell migration. Here, we uncover an essential role of the hematopoietic-specific WRC component HEM1 for immune cell development. Germline-encoded HEM1 deficiency underlies an inborn error of immunity with systemic autoimmunity, at cellular level marked by WRC destabilization, reduced filamentous actin, and failure to assemble lamellipodia.

View Article and Find Full Text PDF

Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found biallelic mutations in the DEF6 gene in patients with an immune disorder and systemic autoimmunity, shedding light on how immune responses can malfunction.
  • The study revealed that these mutations disrupt the regulation of the CTLA-4 protein's movement to the surface of T cells, which is crucial for controlling immune responses.
  • The findings suggest that targeting DEF6 could be a potential strategy for treating autoimmune diseases and cancer, as one patient responded well to CTLA-4-Ig treatment.
View Article and Find Full Text PDF

IL-6 excess is central to the pathogenesis of multiple inflammatory conditions and is targeted in clinical practice by immunotherapy that blocks the IL-6 receptor encoded by We describe two patients with homozygous mutations in who presented with recurrent infections, abnormal acute-phase responses, elevated IgE, eczema, and eosinophilia. This study identifies a novel primary immunodeficiency, clarifying the contribution of IL-6 to the phenotype of patients with mutations in , and genes encoding different components of the IL-6 signaling pathway, and alerts us to the potential toxicity of drugs targeting the IL-6R.

View Article and Find Full Text PDF

Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections.

View Article and Find Full Text PDF

Background & Aims: Congenital diarrheal disorders are rare inherited intestinal disorders characterized by intractable, sometimes life-threatening, diarrhea and nutrient malabsorption; some have been associated with mutations in diacylglycerol-acyltransferase 1 (DGAT1), which catalyzes formation of triacylglycerol from diacylglycerol and acyl-CoA. We investigated the mechanisms by which DGAT1 deficiency contributes to intestinal failure using patient-derived organoids.

Methods: We collected blood samples from 10 patients, from 6 unrelated pedigrees, who presented with early-onset severe diarrhea and/or vomiting, hypoalbuminemia, and/or (fatal) protein-losing enteropathy with intestinal failure; we performed next-generation sequencing analysis of DNA from 8 patients.

View Article and Find Full Text PDF

Background: Studies of monogenic gastrointestinal diseases have revealed molecular pathways critical to gut homeostasis and enabled the development of targeted therapies.

Methods: We studied 11 patients with abdominal pain and diarrhea caused by early-onset protein-losing enteropathy with primary intestinal lymphangiectasia, edema due to hypoproteinemia, malabsorption, and less frequently, bowel inflammation, recurrent infections, and angiopathic thromboembolic disease; the disorder followed an autosomal recessive pattern of inheritance. Whole-exome sequencing was performed to identify gene variants.

View Article and Find Full Text PDF

Although a great deal is known about the signaling events that promote nuclear translocation of NF-κB, how cellular biophysics and the microenvironment might regulate the dynamics of this pathway is poorly understood. In this study, we used high-content image analysis and Bayesian network modeling to ask whether cell shape and context features influence NF-κB activation using the inherent variability present in unperturbed populations of breast tumor and non-tumor cell lines. Cell–cell contact, cell and nuclear area, and protrusiveness all contributed to variability in NF-κB localization in the absence and presence of TNFα.

View Article and Find Full Text PDF

Many species face increasing drought under climate change. Plasticity has been predicted to strongly influence species' drought responses, but broad patterns in plasticity have not been examined for key drought tolerance traits, including turgor loss or 'wilting' point (πtlp ). As soil dries, plants shift πtlp by accumulating solutes (i.

View Article and Find Full Text PDF
Article Synopsis
  • Statistical analysis shows that single cell shapes are influenced by a few stable forms, known as attractor states, during gene depletion experiments.
  • These shapes are shaped by both internal cell factors, like the organization of the cytoskeleton, and external factors, which determine how cells interact with their environment.
  • The research suggests that changes in the environment can lead to adaptations in how cells behave and form complex shapes from a limited variety of basic forms.
View Article and Find Full Text PDF