98%
921
2 minutes
20
Normal fibroblasts produce extracellular matrix (ECM) components that form the structural framework of tissues. Cancer-associated fibroblasts (CAFs) with an activated phenotype mainly contribute to ECM deposition and construction of cancer masses. However, the stroma of breast cancer tissues has been shown to be more complicated, and the mechanisms through which CAFs influence ECM deposition remain elusive. In this study, we found that the activated fibroblast marker α-smooth muscle actin (α-SMA) was only present in the stroma of breast cancer tissue, and the CAFs isolated from invasive breast cancer sample remained to be activated and proliferative in passages. To further assess the difference between CAFs and normal breast fibroblasts (NFs), MALDI TOF/TOF‑MS was used to analyze the secretory proteins of primary CAFs and NFs. In total, 2,903 and 3,023 proteins were identified. Mass spectrum quantitative assay and data analysis for extracellular proteins indicated that the CAFs produce less collagens and matrix-degrading enzymes compared with NFs. This finding was confirmed by western blot analysis. Furthermore, we discovered that reduced collagen deposition was present in the stroma of invasive breast cancer. These studies showed that although CAFs from invasive breast cancer possess an activated phenotype, they secreted less collagen and induced less ECM deposition in cancer stroma. In cancer tissue, the remodeling of stromal structure and tumor microenvironment might, therefore, be attributed to the biological changes in CAFs including their protein expression profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2014.2562 | DOI Listing |
JMIR Hum Factors
September 2025
KK Women's and Children's Hospital, Singapore, Singapore.
Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.
View Article and Find Full Text PDFJAMA Surg
September 2025
Department of Population Health, NYU Grossman School of Medicine, New York, New York.
Int J Surg
September 2025
Department of Neurosurgery, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, People's Republic of China.
Med Oncol
September 2025
Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, Kolkata, India.
Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).
View Article and Find Full Text PDF