Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The (1,3)-β-glucan callose is a major component of cell wall thickenings in response to pathogen attack in plants. GTPases have been suggested to regulate pathogen-induced callose biosynthesis. To elucidate the regulation of callose biosynthesis in Arabidopsis thaliana, we screened microarray data and identified transcriptional upregulation of the GTPase RabA4c after biotic stress. We studied the function of RabA4c in its native and dominant negative (dn) isoform in RabA4c overexpression lines. RabA4c overexpression caused complete penetration resistance to the virulent powdery mildew Golovinomyces cichoracearum due to enhanced callose deposition at early time points of infection, which prevented fungal ingress into epidermal cells. By contrast, RabA4c(dn) overexpression did not increase callose deposition or penetration resistance. A cross of the resistant line with the pmr4 disruption mutant lacking the stress-induced callose synthase PMR4 revealed that enhanced callose deposition and penetration resistance were PMR4-dependent. In live-cell imaging, tagged RabA4c was shown to localize at the plasma membrane prior to infection, which was broken in the pmr4 disruption mutant background, with callose deposits at the site of attempted fungal penetration. Together with our interactions studies including yeast two-hybrid, pull-down, and in planta fluorescence resonance energy transfer assays, we concluded that RabA4c directly interacts with PMR4, which can be seen as an effector of this GTPase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4145140PMC
http://dx.doi.org/10.1105/tpc.114.127779DOI Listing

Publication Analysis

Top Keywords

penetration resistance
16
callose deposition
12
gtpase raba4c
8
complete penetration
8
powdery mildew
8
callose
8
callose biosynthesis
8
raba4c overexpression
8
enhanced callose
8
deposition penetration
8

Similar Publications

Viral warfare: unleashing engineered oncolytic viruses to outsmart cancer's defenses.

Front Immunol

September 2025

Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.

Oncolytic virotherapy (OVT) has emerged as a promising and innovative cancer treatment strategy that harnesses engineered viruses to selectively infect, replicate within, and destroys malignant cells while sparing healthy tissues. Beyond direct oncolysis, oncolytic viruses (OVs) exploit tumor-specific metabolic, antiviral, and immunological vulnerabilities to reshape the tumor microenvironment (TME) and initiate systemic antitumor immunity. Despite promising results from preclinical and clinical studies, several barriers, including inefficient intratumoral virus delivery, immune clearance, and tumor heterogeneity, continue to limit the therapeutic advantages of OVT as a standalone modality and hindered its clinical success.

View Article and Find Full Text PDF

Photoacoustic-imaging nanomotors enhance tumor penetration and alleviate hypoxia for photodynamic therapy of breast cancer.

Biomater Sci

September 2025

Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, P.R. China. iamzgteng@

Breast cancer is the most prevalent malignancy worldwide, yet conventional therapies are invasive and prone to resistance, recurrence, and metastasis. Photodynamic therapy (PDT) is a promising noninvasive modality, but its efficacy is limited by tumor hypoxia and poor photosensitizer delivery. Here, we report a photoacoustic-imaging nanomotor, PPIC, which addresses these challenges through integrated functions of oxygen production, deep tissue penetration and photoacoustic imaging.

View Article and Find Full Text PDF

Sequential YAP-1/FOSL-1 silencing and epigenetic therapy to overcome stromal barriers in pancreatic cancer.

Int J Pharm

September 2025

CINBIO, Immunology Group, Universidade de Vigo 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, 36312 Vigo, Spain. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) remains a highly aggressive malignancy with poor therapeutic outcomes due to its desmoplastic tumor microenvironment (TME), hindering drug and activated immune cell penetration. Cancer-associated fibroblasts (CAFs) are central in supporting tumor growth and forming a protective stroma. We propose a novel dual-therapy targeting the Hippo pathway and histone deacetylation, both involved in tumor progression, resistance, and stromal interactions, to overcome PDAC therapeutic resistance.

View Article and Find Full Text PDF

Light-activated antimicrobial polymers with citronellol-enhanced bacterial accumulation for on-demand disinfection.

J Mater Chem B

September 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).

View Article and Find Full Text PDF

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF