Effect of estrogenic binary mixtures in the yeast estrogen screen (YES).

Regul Toxicol Pharmacol

BASF SE Experimental Toxicology and Ecology, Carl-Bosch Str. 38, 67056 Ludwigshafen am Rhein, Germany. Electronic address:

Published: October 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endocrine disrupting compounds (EDCs) of natural or synthetic origin can interfere with the balance of the hormonal system, either by altering hormone production, secretion, transport, or their binding and consequently lead to an adverse outcome in intact animals. An important aspect is the prediction of effects of combined exposure to two or more EDCs at the same time. The yeast estrogen assay (YES) is a broadly used method to assess estrogenic potential of chemicals. Besides exhibiting good predictivity to identify compounds which interfere with the estrogen receptor, it is easy to handle, rapid and therefore allows screening of a large number of single compounds and varying mixtures. Herein, we applied the YES assay to determine the potential combination effects of binary mixtures of two estrogenic compounds, bisphenol A and genistein, as well as one classical androgen that in vitro also exhibits estrogenic activity, trenbolone. In addition to generating data from combined exposure, we fitted these to a four-parametric logistic dose-response model. As all compounds tested share the same mode of action dose additivity was expected. To assess this, the Loewe model was utilized. Deviations between the Loewe additivity model and the observed responses were always small and global tests based on the whole dose-response data set indicated in general a good fit of the Loewe additivity model. At low concentrations concentration additivity was observed, while at high concentrations, the observed effect was lower than additivity, most likely reflecting receptor saturation. In conclusion, our results suggest that binary combinations of genistein, bisphenol A and trenbolone in the YES assay do not deviate from expected additivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2014.07.006DOI Listing

Publication Analysis

Top Keywords

binary mixtures
8
yeast estrogen
8
combined exposure
8
loewe additivity
8
additivity model
8
additivity
6
compounds
5
estrogenic
4
estrogenic binary
4
mixtures yeast
4

Similar Publications

The interactions between ethylcellulose (EC) and waxes in multicomponent oleogel systems are underexplored. This study investigated the structural, functional, and physiochemical properties of rice bran oil (RBO) oleogels structured with various ratios of EC and a binary wax blend (9:1 beeswax (BW): carnauba wax (CRW)), varied in 0.5 % w/w increments at a constant total gelator concentration of 4 % w/w.

View Article and Find Full Text PDF

Efficient and low-cost removal of dissolved organic phosphorus by visible light-enhanced Ti electrocoagulation with self-generated rutile photocatalysts.

Water Res

August 2025

State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.

View Article and Find Full Text PDF

Multi-way calibration strategies involving excitation-emission data measurements from drug-modulated fluorescence in CdTe quantum dots and AgInS nanocrystals.

Anal Chim Acta

November 2025

The Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE) - the Portuguese Research Centre for Sustainable Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal. Electronic address:

Background: When using semiconductor quantum dots (QDs) for single-analyte sensing, recognition is commonly achieved through interactions with capping ligands attached to the QDs surface. These ligands form an organic layer that provides stability in solution and assures selectivity by binding the target analyte via surface functional groups. However, a common analytical challenge arises in the subsequent stage of the QD-based sensing scheme.

View Article and Find Full Text PDF

The application of infrared spectroscopy and DFT calculations to better understand interactions between bosentan hydrate and sildenafil base induced by high energy ball milling.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland; Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, Osaka, Japan.

In this study, infrared spectroscopy investigations in combination with DFT calculations were used to elucidate interactions between bosentan monohydrate (BOS) and sildenafil base (SIL) initiated under high energy ball milling. The research was focused mainly on the vibrational properties of their co-milled binary solid dispersions compared to the physical mixtures and single drugs. First, the stability and structure of sildenafil isomers were established.

View Article and Find Full Text PDF

Air pollution caused by pesticide drift poses a significant environmental health risk. The lungs are directly targeted by airborne pesticide exposure via inhalation; however, their inhalation toxicological data are poorly understood. In the present study, we evaluated the combined toxicity and interactions of lambda-cyhalothrin and its binary mixtures with eight insecticides at a concentration ratio of 1:1 in the non-small-cell lung cancer A549 line cells.

View Article and Find Full Text PDF