98%
921
2 minutes
20
Intrinsically disordered Phe-Gly nucleoporins (FG Nups) within nuclear pore complexes exert multivalent interactions with transport receptors (Karyopherins (Kaps)) that orchestrate nucleocytoplasmic transport. Current FG-centric views reason that selective Kap translocation is promoted by alterations in the barrier-like FG Nup conformations. However, the strong binding of Kaps with the FG Nups due to avidity contradicts rapid Kap translocation in vivo. Here, using surface plasmon resonance, we innovate a means to correlate in situ mechanistic (molecular occupancy and conformational changes) with equilibrium (binding affinity) and kinetic (multivalent binding kinetics) aspects of Karyopherinβ1 (Kapβ1) binding to four different FG Nups. A general feature of the FxFG domains of Nup214, Nup62, and Nup153 is their capacity to extend and accommodate large numbers of Kapβ1 molecules at physiological Kapβ1 concentrations. A notable exception is the GLFG domain of Nup98, which forms a partially penetrable cohesive layer. Interestingly, we find that a slowly exchanging Kapβ1 phase forms an integral constituent within the FG Nups that coexists with a fast phase, which dominates transport kinetics due to limited binding with the pre-occupied FG Nups at physiological Kapβ1 concentrations. Altogether, our data reveal an emergent Kap-centric barrier mechanism that may underlie mechanistic and kinetic control in the nuclear pore complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4008817 | PMC |
http://dx.doi.org/10.1016/j.bpj.2014.02.021 | DOI Listing |
PLoS Pathog
September 2025
State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America.
Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.
View Article and Find Full Text PDFCurr Biol
August 2025
National Key Laboratory of Green Pesticide, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Plant viruses are known to indirectly manipulate insect vector behavior by altering host-plant phenotypes, yet the mechanisms by which they directly regulate vector behavior to enhance transmission remain poorly understood. Here, we reveal how the southern rice black-streaked dwarf virus (SRBSDV) reprograms the host preference of its planthopper vector, Sogatella furcifera, from infected to healthy rice plants by disrupting immune-olfactory crosstalk. We demonstrate that the SRBSDV-encoded P8 protein competitively binds to the S.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Anesthesiology, Qianjiang Maternal and Child Health and Family Planning Service Centre, Qianjiang, Hubei, China.
Acute lung injury (ALI) is a major contributor to the high morbidity and mortality associated with intestinal ischemia-reperfusion (II/R). Despite its severity, current clinical management of ALI remains limited to supportive care without addressing the cause of the disease, underscoring the urgent need to investigate the underlying mechanism and develop targeted therapies. In this study, we employed both in vitro and in vivo models to explore ALI in the setting of II/R.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Rheumatology and Immunology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, Sichuan, China.
Background: The clinical differentiation between obstetric antiphospholipid syndrome (OAPS) and undifferentiated connective tissue disease (UCTD) presents significant diagnostic challenges. This study employs metabolomics to investigate metabolic reprogramming patterns in OAPS and UCTD, aiming to identify potential biomarkers for early diagnosis.
Methods: Using LC-MS-based metabolomics, we analyzed serum profiles from 40 OAPS patients (B1), 30 OAPS + UCTD patients (B2), 27 UCTD patients (B3), and 30 healthy controls (A1).