Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984276PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094906PLOS

Publication Analysis

Top Keywords

fire suppression
36
area burnt
16
large fires
12
fire
12
weather conditions
12
suppression
10
unplanned fires
8
mild weather
8
suppression strategies
8
opportunistic fire
8

Similar Publications

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF

Competition-Coupling Trade-Off of Supramolecular Interactions in Janus Composite Quasi-Solid Electrolytes Enables High-Safety and Long-Life Lithium Metal Batteries.

Small

September 2025

Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Advanced Polymeric Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China.

The LiAlTi(PO) (LATP)-polymer composite solid electrolyte offers environmental stability and safety for high-energy lithium metal batteries (LMBs), yet suffers from interfacial instability and high interfacial resistance. Herein, a Janus self-supporting skeleton (J-SSK) is engineered via multi-scale coupling of poly(vinylidene fluoride-trifluorethylene) (PVDF-TrFE), LATP, 2-(3-(6-methyl-4-oxo-1,4-dihydropyrimidin-2-yl) ureido) ethyl methacrylate (UPyMA) monomer, where intermolecular multiple hydrogen bonds reinforce mechanical robustness while the Janus structure isolates LATP from direct Li contact. In situ copolymerizing vinylene carbonate (VC) and UPyMA monomer in J-SSK to construct Janus composite quasi-solid electrolyte (J-CQSE) achieves seamless integration of electrode/electrolyte interfaces and establishes hierarchical coupling across J-SSK, polymer matrix, and lithium salts.

View Article and Find Full Text PDF

Forest fires are integral to forest ecosystems as they influence nutrient cycling, plant regeneration, tree density, and biodiversity. However, human-induced climate change and activities have made forest fires more frequent, more intense, and more widespread, exacerbating their ecological and socioeconomic impact. Forest fires shape Tamil Nadu's diverse forest ecosystems, yet rising anthropogenic pressure and a warmer, drier climate have increased both their frequency and severity.

View Article and Find Full Text PDF

Radiative Coupled Evaporation Cooling Hydrogel for Above-Ambient Heat Dissipation and Flame Retardancy.

Nanomicro Lett

September 2025

School of Energy Science and Engineering, Central South University, Changsha, 430001, People's Republic of China.

By combining the merits of radiative cooling (RC) and evaporation cooling (EC), radiative coupled evaporative cooling (REC) has attracted considerable attention for sub-ambient cooling purposes. However, for outdoor devices, the interior heating power would increase the working temperature and fire risk, which would suppress their above-ambient heat dissipation capabilities and passive water cycle properties. In this work, we introduced a REC design based on an all-in-one photonic hydrogel for above-ambient heat dissipation and flame retardancy.

View Article and Find Full Text PDF

Fungi contribute to ecosystem function through nutrient cycling and decomposition but may be affected by major disturbances such as fire. Some ecosystems are fire-adapted, such as prairies which require cyclical burning to mitigate woody plant encroachment and reduce litter. While fire suppresses fire-sensitive fungi, pyrophilous fungi may continue providing ecosystem functions.

View Article and Find Full Text PDF