98%
921
2 minutes
20
Despite declining sequencing costs, few methods are available for cost-effective single-nucleotide polymorphism (SNP), insertion/deletion (INDEL) and copy number variation (CNV) discovery in a single assay. Commercially available methods require a high investment to a specific region and are only cost-effective for large samples. Here, we introduce a novel, flexible approach for multiplexed targeted sequencing and CNV analysis of large genomic regions called multiplexed direct genomic selection (MDiGS). MDiGS combines biotinylated bacterial artificial chromosome (BAC) capture and multiplexed pooled capture for SNP/INDEL and CNV detection of 96 multiplexed samples on a single MiSeq run. MDiGS is advantageous over other methods for CNV detection because pooled sample capture and hybridization to large contiguous BAC baits reduces sample and probe hybridization variability inherent in other methods. We performed MDiGS capture for three chromosomal regions consisting of ∼ 550 kb of coding and non-coding sequence with DNA from 253 patients with congenital lower limb disorders. PITX1 nonsense and HOXC11 S191F missense mutations were identified that segregate in clubfoot families. Using a novel pooled-capture reference strategy, we identified recurrent chromosome chr17q23.1q23.2 duplications and small HOXC 5' cluster deletions (51 kb and 12 kb). Given the current interest in coding and non-coding variants in human disease, MDiGS fulfills a niche for comprehensive and low-cost evaluation of CNVs, coding, and non-coding variants across candidate regions of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4041413 | PMC |
http://dx.doi.org/10.1093/nar/gku218 | DOI Listing |
Plant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
Bioimpacts
August 2025
Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye.
Colorectal cancer (CRC) constitutes a significant global health challenge, accounting for a considerable proportion of cancer cases and associated mortality. Projections indicate a potential increase in new cases by 2040, attributed to demographic factors such as aging and population growth. Although advancements in the understanding of CRC pathophysiology have broadened treatment options, challenges such as drug resistance and adverse effects persist, highlighting the necessity for enhanced diagnostic methodologies.
View Article and Find Full Text PDFJ Periodontal Res
September 2025
Center for Biomedical Research and Innovation (CIIB), Universidad de Los Andes, Santiago, Chile.
This study identifies a transcriptomic profile of long noncoding RNAs in gingival crevicular fluid samples in pregnant women with gestational diabetes risk. NEAT1 and LINC-PINT were increased expression in gingival crevicular fluid samples in pregnancies later diagnosed with gestational diabetes mellitus.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
October 2025
Department of Medical Pharmacology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and frontotemporal dementia represent a significant global health burden with limited therapeutic options. Current treatments are primarily symptomatic and fail to modify disease progression, emphasizing the urgent need for novel, mechanism-based interventions. Recent advances in molecular neuroscience have identified several non-classical pathogenic pathways, including neuroinflammation, mitochondrial dysfunction, impaired autophagy and proteostasis, synaptic degeneration and non-coding RNA dysregulation.
View Article and Find Full Text PDF