Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The microbial communities in a hybrid biofilm-activated sludge reactor (HY) for nitrogen and phosphorus removal were characterized by 16S rRNA-based clone libraries and phylogenetic analysis. The hybrid reactor removed over 90% of COD, 92% of total nitrogen (TN) and 95% of total phosphorus (TP) from the municipal wastewater, respectively. The mean removal rates of COD, TN, and TP in the conventional suspended activated sludge reactor were above 80%, 80% and 94%, respectively. Community structures were determined by phylogenetic analyses of six clone libraries (each nearly 100 clones). The dominant bacterial group with which clones were affiliated to the beta subclass of the Proteobacteria (31% to approximately 77%), following the Bacteroidetes group (10% to approximately 34%). In addition, several clone groups affiliated with unknown bacterial assemblages were identified in the clone libraries. Acinetobacter sp., which was thought to had played an important role in phosphate removal systems, was scarcely represented by clone sequences in both libraries. Differences in community structure were observed between the hybrid reactor and activated sludge reactors. Such differences may account for the differing wastewater treating capabilities of the two different systems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

sludge reactor
12
clone libraries
12
community structure
8
hybrid biofilm-activated
8
biofilm-activated sludge
8
nitrogen phosphorus
8
phosphorus removal
8
hybrid reactor
8
activated sludge
8
reactor
5

Similar Publications

Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.

View Article and Find Full Text PDF

Mechanistic Insights into Recovery of Partial Denitrification/Anammox under Continuous Flow: Balancing Nitrite Supply and Microbial Competition.

Environ Res

September 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.

Partial denitrification coupled with anammox (PD/A) has emerged as a promising low-carbon strategy for energy-efficient nitrogen removal from municipal wastewater. However, the reactivation of PD/A systems following operational disturbances remains challenging, particularly under continuous-flow conditions, where microbial interactions and process stability are more complex than in sequencing batch reactors. This study systematically and first evaluated the recovery dynamics of a continuous-flow PD/A process seeded with low-activity granular sludge stored at 4 °C for three months.

View Article and Find Full Text PDF

Optimal low-frequency mechanical vibration enhances extracellular polymeric substances-mediated phosphorus removal in biological systems.

Water Res

August 2025

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China.

The biological phosphorus removal (BPR) process relies on frequent phosphorus exchange between functional microorganisms and their surrounding environment. However, limited mass transfer restricts the overall phosphorus removal efficiency. In this study, low-frequency mechanical vibration (LFMV) was introduced into the anaerobic/oxic reactors.

View Article and Find Full Text PDF

Unlabelled: One of the inherent problems of activated sludge processes (ASPs) is the production of large volumes of sludge, which creates issues in secondary clarifiers regarding sludge settling. The application of physical methods such as static magnetic fields (SMFs) has attracted considerable attention from researchers in recent years regarding the sedimentation of wastewater sludge in ASPs. One basic parameter for evaluating sludge settling measurement is the rate of settling sludge in the graduated cylinder for 30 min (SV).

View Article and Find Full Text PDF

Multidimensional mechanisms of biochar in mitigating Fe(III) stress in anammox consortia.

Environ Res

August 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR

The stress of high-concentration Fe(III) severely restricts the anaerobic ammonium oxidation (anammox) engineering application. Herein, we systematically investigated the mitigating mechanisms of biochar-mediated anammox system against Fe(III) stress by constructing a batch reaction system with a gradient Fe(III) concentration (0-100 mg/L). The results showed that biochar notably mitigated Fe(III) toxicity by synergizing multiple pathways, such as physical adsorption, chemical reduction, and biological sheltering.

View Article and Find Full Text PDF