Crystallization and preliminary X-ray diffraction analysis of the Fab portion of the Alzheimer's disease immunotherapy candidate bapineuzumab complexed with amyloid-β.

Acta Crystallogr F Struct Biol Commun

ACRF Rational Drug Discovery Centre and Biota Structural Biology Laboratory, St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3056, Australia.

Published: March 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bapineuzumab (AAB-001) and its derivative (AAB-003) are humanized versions of the anti-Aβ murine antibody 3D6 and are immunotherapy candidates in Alzheimer's disease. The common Fab fragment of these immunotherapies has been expressed, purified and crystallized in complex with β-amyloid peptides (residues 1-8 and 1-28). Diffraction data at high resolution were acquired from crystals of Fab-Aβ8 (2.0 Å) and Fab-Aβ28 (2.2 Å) complexes at the Australian Synchrotron. Both crystal forms belonged to the primitive orthorhombic space group P21221.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3944706PMC
http://dx.doi.org/10.1107/S2053230X14001642DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
8
crystallization preliminary
4
preliminary x-ray
4
x-ray diffraction
4
diffraction analysis
4
analysis fab
4
fab portion
4
portion alzheimer's
4
disease immunotherapy
4
immunotherapy candidate
4

Similar Publications

Estimated Glucose Disposal Rate and Risk of Stroke and Dementia in Nondiabetics: A UK Biobank Prospective Cohort Study.

Arterioscler Thromb Vasc Biol

September 2025

Institute of Cardiovascular Diseases and Department of Cardiology, Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu (K.L., H.M., W.J

Background: The estimated glucose disposal rate (eGDR) is a validated surrogate marker of insulin resistance. However, its association with stroke and dementia in nondiabetic populations remains insufficiently investigated.

Methods: This prospective cohort study included nondiabetic participants from the UK Biobank.

View Article and Find Full Text PDF

Traumatic brain injuries (TBIs) are a risk factor for Alzheimer's disease (AD), and share several important pathological features including the development of neurofibrillary tangles (NFT) of tau protein. While this association is well established, the underlying pathogenesis is poorly defined and current treatment options remain limited, necessitating novel methods and approaches. In response we developed "TBI-on-a-chip", an trauma model utilizing murine cortical networks on microelectrode arrays (MEAs), capable of reproducing clinically relevant impact injuries while providing simultaneous morphological and electrophysiological readout.

View Article and Find Full Text PDF

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Case Study 10: A 51-Year-Old Man With Psychosis, Decline in Self-Care, and Cognitive Deterioration.

J Neuropsychiatry Clin Neurosci

September 2025

Departments of Psychiatry and Neurology, Center for Brain/Mind Medicine, and Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF