Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The fluorescence lifetime (τf), emission quantum yield (Φf), absorption and emission spectral data of 20 fluorescein derivatives were measured under the same conditions by using time-correlated single photon counting, steady state fluorescence and absorption methods to get comparable data. Based on the results, the factors and mechanism that control the fluorescence properties of the fluorescein dyes are discussed. Both Φf and τf are remarkably dependent on the substitution on either xanthene or phenyl rings, but their ratio (Φf/τf), i.e. rate constant of radiation process, is a constant value (0.20 × 10(9) s(-1)). The rate constant of nonradiation process, on the other hand, is varied with both the structure and the solvent used.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-014-1356-5DOI Listing

Publication Analysis

Top Keywords

fluorescence properties
8
fluorescein derivatives
8
quantum yield
8
absorption emission
8
rate constant
8
fluorescence
4
properties twenty
4
twenty fluorescein
4
derivatives lifetime
4
lifetime quantum
4

Similar Publications

Photocatalytic cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes to access 3-(2,2,2-trifluoroethyl)-3-indoles.

Chem Commun (Camb)

September 2025

College of Chemistry, Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, State Key Laboratory of Coking Coal Resources Green Exploitation, Zhengzhou University, Zhengzhou 450052, P. R. China.

A visible-light-catalyzed three-component cyclization reaction of 2-vinylarylamines with CFSONa and arylaldehydes is developed to build a series of 3-(2,2,2-trifluoroethyl)-3-indoles. This protocol features mild reaction conditions using an 18 W blue LED as the light source at room temperature. The desired 3-indole products can be successfully transformed into valuable tetrahydroindole scaffolds through either reduction or cross-coupling reactions.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

Visualizing intracellular glycine with two-dye and single-dye ratiometric RNA-based sensors.

Nucleic Acids Res

September 2025

Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.

Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Novel carbon dots-based system for "on-off-on" fluorescence consecutive sensing of Au and L-Cys.

Food Chem

September 2025

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China. Electronic address: zh

In this study, a novel carbon dots-based system was developed for the sequential quantification of Au and L-cysteine (L-Cys). The system comprises N,F-doped carbon dots (N,F-CDs), a custom-designed miniaturized fluorimeter, and test strips. The N,F-CDs exhibit outstanding optical properties, including a large Stokes shift (127 nm) and high fluorescence intensity.

View Article and Find Full Text PDF