Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Huntington's disease (HD) is a devastating neurodegenerative disorder which is inherited in an autosomal dominant manner. HD is caused by a trinucleotide CAG repeat expansion that encodes a polyglutamine stretch in the huntingtin (HTT) protein. Mutant HTT expression leads to a myriad of cellular dysfunctions culminating in neuronal loss and consequent motor, cognitive and psychiatric disturbances in HD patients. The length of the CAG repeat is inversely correlated with age of onset (AO) in HD patients, while environmental and genetic factors can further modulate this parameter. Here, we explored whether the recently described copy-number variation (CNV) of the gene SLC2A3-which encodes the neuronal glucose transporter GLUT3-could modulate AO in HD. Strikingly, we found that increased dosage of SLC2A3 delayed AO in an HD cohort of 987 individuals, and that this correlated with increased levels of GLUT3 in HD patient cells. To our knowledge this is the first time that CNV of a candidate gene has been found to modulate HD pathogenesis. Furthermore, we found that increasing dosage of Glut1-the Drosophila melanogaster homologue of this glucose transporter-ameliorated HD-relevant phenotypes in fruit flies, including neurodegeneration and life expectancy. As alterations in glucose metabolism have been implicated in HD pathogenesis, this study may have important therapeutic relevance for HD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030768PMC
http://dx.doi.org/10.1093/hmg/ddu022DOI Listing

Publication Analysis

Top Keywords

copy-number variation
8
neuronal glucose
8
glucose transporter
8
age onset
8
huntington's disease
8
cag repeat
8
variation neuronal
4
glucose
4
transporter gene
4
gene slc2a3
4

Similar Publications

De novo inherited Xq25 deletion: hints from preimplantation genetic testing in alobar holoprosencephaly.

Eur J Obstet Gynecol Reprod Biol

August 2025

Reproductive Medicine Center, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen 518000 Guangdong, China; Shenzhen Clinical Research Center for Obstetrics & Gynecology and Reproductive System Diseases, Shenzhen 518000 Guangdong, China. Electronic address: szfyart

Objective: This study investigates the association between alobar holoprosencephaly (HPE) and de novo germline microdeletions in the Xq25 region. To develop a Preimplantation Genetic Testing for Monogenic Disorders (PGT-M) based workflow enabling high-resolution preimplantation detection of sub-Mb microdeletions, overcoming the >1 Mb resolution limit of conventional whole genome amplification(WGA) copy number variation(CNV) sequencing to identify causative Xq25 variants and prevent pathogenic microdeletion transmission.

Methods: This study presents a clinical case involving a couple with an adverse obstetric history accompanied by two occurrences of HPE.

View Article and Find Full Text PDF

Sinonasal mucosal melanoma (SNMM) is a rare aggressive malignancy of the sinonasal tract. Due to its advanced clinical presentation and frequent late-stage diagnosis, the 5-year survival rate is less than 30%, with an even worse prognosis in patients with distant metastasis (SNMM-M). Therefore, characterizing the molecular landscape of SNMM may provide novel therapeutic targets for SNMM-M.

View Article and Find Full Text PDF

Unraveling cellular dynamic changes in tumor evolution induced by long-term low dose-rate radiation.

Br J Cancer

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Key Laboratory of Radiation Damage and Countermeasures of Jiangsu Provincial Universities and Col

Background: In recent years, there has been a steady increase in professionals engaged in radioactive work. The biological impacts of long-term exposure to low dose-rate radiation remain elusive, as there is a dearth of systematic research in this field.

Methods: BEAS-2B cells were used to establish a cell model with continuous passaging after radiation exposure, which was subsequently subjected to in vivo tumorigenesis assays and in vitro malignant phenotype experiments.

View Article and Find Full Text PDF

Coalescing single-cell genomes and transcriptomes to decode breast cancer progression.

Cell

August 2025

Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA; MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Bioinformatics, UT MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:

Understanding epithelial lineages of breast cancer and genotype-phenotype relationships requires direct measurements of the genome and transcriptome of the same single cells at scale. To achieve this, we developed wellDR-seq, a high-genomic-resolution, high-throughput method to simultaneously profile the genome and transcriptome of thousands of single cells. We profiled 33,646 single cells from 12 estrogen-receptor-positive breast cancers and identified ancestral subclones in multiple patients that showed a luminal hormone-responsive lineage, indicating a potential cell of origin.

View Article and Find Full Text PDF

DNA abnormalities characterized by cytogenetic imaging at the single cell resolution, i.e. karyotyping, have long served as cancer diagnostic and prognostic biomarkers.

View Article and Find Full Text PDF