A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unraveling cellular dynamic changes in tumor evolution induced by long-term low dose-rate radiation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In recent years, there has been a steady increase in professionals engaged in radioactive work. The biological impacts of long-term exposure to low dose-rate radiation remain elusive, as there is a dearth of systematic research in this field.

Methods: BEAS-2B cells were used to establish a cell model with continuous passaging after radiation exposure, which was subsequently subjected to in vivo tumorigenesis assays and in vitro malignant phenotype experiments. By scRNA-seq, we conducted copy number variation analysis, cell trajectory analysis, and cell communication analysis. Furthermore, we used FACS, molecular docking, multiplex immunohistochemistry, qRT-PCR, and co-immunoprecipitation to validate and further explore the molecular mechanisms driving tumor evolution.

Results: Long-term low dose-rate exposure is associated with a higher degree of malignancy, as evidenced by the induction of more CNV and EMT events, as well as the delayed activation of DNA repair pathways, which trigger increased genomic instability. The long-term low dose-rate specific ligand-receptor pair, ANGPTL4-SDC4, enhances cell malignancy by promoting angiogenesis in newly formed lung tumor cells.

Conclusions: This study not only provides the first evidence and mechanistic explanation that long-term low dose-rate radiation leads to increased cellular malignancy but also offers valuable theoretical insights into the dynamic processes of early tumor evolution in lung cancer within the realm of tumor biology.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41416-025-03128-9DOI Listing

Publication Analysis

Top Keywords

low dose-rate
20
long-term low
16
dose-rate radiation
12
tumor evolution
8
analysis cell
8
tumor
5
long-term
5
low
5
dose-rate
5
unraveling cellular
4

Similar Publications