98%
921
2 minutes
20
A series of stilbazolium salts based on donor-π-acceptor (D-π-A) structure have been synthesized and fully characterized. Photophysical properties including linear absorption, one-photon excited fluorescence (OPEF), two-photon absorption (2PA) properties were systematically investigated. The results suggest that increasing electron-releasing character of the terminal group leads to a more pronounced donor-to-acceptor intramolecular charge transfer (ICT). In addition, the dyes possess the largest 2PA cross sections in the near infrared region (NIR) and display maximum two-photon absorption cross sections within the narrow wavelength range from 950 to 970nm and BL3 exhibits a large nonlinear refractive index coefficient and possesses very large values of the real part of the cubic hyperpolarizability χ((3)) at 960nm. Furthermore, the initial density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations provide reasonable explanations for their absorption spectra, meanwhile we used the Lippert-Mataga equation to evaluate the dipole moment changes of the dyes with photoexcitation, the results are corresponding with linear and nonlinear optical properties of the dyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.12.048 | DOI Listing |
Nat Nanotechnol
September 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.
View Article and Find Full Text PDFNat Commun
September 2025
Institute of Physics, University of Rostock, Albert-Einstein-Str. 23, 18059, Rostock, Germany.
The concept of parity-time symmetry has firmly established non-Hermiticity as a versatile degree of freedom on a variety of physical platforms. In general, the non-Hermitian dynamics of open systems are perceived to be inextricably linked to complex-valued potentials facilitating the local attenuation and coherent amplification in wave mechanics. Along these lines, time reversal symmetry is associated with a complex conjugation of the potential landscape, in essence swapping gain and loss.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium. Electronic address:
Cellulose nanocrystals (CNCs) have emerged as promising candidates for chiroptical functional materials due to their ability to form cholesteric liquid crystals with tunable periodicity. The quality of the final cholesteric phase is influenced by the nucleation, growth and coalescence mechanism of the initial droplets, known as tactoids. Current research focuses on understanding the size and morphological transformations of these tactoids, to gain deeper insights into their dynamic behavior and, in turn, to better control the final properties of novel photonic materials.
View Article and Find Full Text PDFNpj Nanophoton
September 2025
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
Second-order nonlinear optical processes are fundamental to photonics, spectroscopy, and information technologies, with material platforms playing a pivotal role in advancing these applications. Here, we demonstrate the exceptional nonlinear optical properties of the van der Waals crystal 3R-MoS, a rhombohedral polymorph exhibiting high second-order optical susceptibility ( ) and remarkable second-harmonic generation (SHG) capabilities. By designing high quality factor resonances in 3R-MoS metasurfaces supporting quasi-bound states in the continuum (qBIC), we first demonstrate SHG efficiency enhancement exceeding 10.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.
Observation of the second-harmonic generation (SHG) from subwavelength metallic structures is often hindered by the interrelations of higher-order multipolar contributions. In particular, the magnetic Lorentz contribution to SHG is often neglected due to the ineffective magnetic field enhancement in electrically resonant structures. Here, we demonstrate a strong Lorentz-driven SHG output at the plasmon-induced magnetic dipolar resonance in inversion-symmetry-broken plasmonic nanocavities.
View Article and Find Full Text PDF