Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to explore the influence of Phyllostachys edulis invasion on the surrounding forest environment,the effects of aqueous extracts from P. edulis on two dominant species (Castanopsis sclerophylla and Cyclobalanopsis glaunca)in southern China were assessed by germination bioassays. The results showed that seed germination effects depended on the concentration of aqueous extracts and the extract sources. The highest extract concentration showed significant inhibitory effects on seed germination percentage, which was 82. 3% -102. 2% of control for C. sclerophylla and 80% -90. 9% of control for C. glauca, while in the treatment with lowest extract concentration the values were 101.7% - 107.6% of control for C. sclerophylla and 94.9% - 109. 1% of control for C. glauca, respectively. The extracts had inhibitory effects on the germination speed of both species (P < 0.05) , except that no effects on C. sclerophylla were observed in the low concentration treatment. Extracts at the highest concentration reduced the root activity of C. sclerophylla by 41. 1% -62. 4% (P <0.05). There were obvious different effects among the treatments with different extract sources. Seed germination percentage was the lowest in root extract treatments. There was no obvious difference for shoot height of C. sclerophylla in different treatments(P >0.05) , while there was significant difference for C. glauca, its shoot height was higher in the leaf, root, and litter extracts treatments than in the soil extracts treatments. P. edulis possesses allelopathic potential that could possibly facilitate its invasion and monoculture formation, and does harm to the surrounding forest environment.

Download full-text PDF

Source

Publication Analysis

Top Keywords

phyllostachys edulis
8
edulis dominant
8
surrounding forest
8
aqueous extracts
8
seed germination
8
extract concentration
8
inhibitory effects
8
control sclerophylla
8
control glauca
8
extracts treatments
8

Similar Publications

Agricultural nonpoint source pollution (NPSP) is a serious environmental problem globally. Soil nitrogen (N) loss can cause eutrophication. Soil microorganisms are the key factor influencing soil N.

View Article and Find Full Text PDF

Cadmium (Cd) stress severely hampers plant growth in forest ecosystems. Although magnesium oxide nanoparticles (MgONPs) are known to reduce Cd toxicity in numerous plant species, their detoxification mechanisms in Moso bamboo () remain unexplored. The present study investigates how MgONPs mitigate the Cd-induced phytotoxic effects in by examining morpho-physiological and cellular oxidative repair mechanisms.

View Article and Find Full Text PDF

Soil phosphorus (P) availability is a critical factor affecting the productivity of (moso bamboo) forests. However, the mechanisms underlying the physiological and growth responses of moso bamboo to varying soil P conditions remain poorly understood. The aim of this study was to elucidate the adaptive mechanisms of moso bamboo to different soil P levels from the perspectives of root morphological and architectural plasticity, as well as the allocation strategies of nutrient elements and photosynthates.

View Article and Find Full Text PDF

Moso bamboo (), the most widely distributed bamboo species in China, is valued for both its shoots and timber. This species often faces challenges from high-temperature stress. To cope with this stress, Moso bamboo has evolved various adaptive mechanisms at the physiological and molecular levels.

View Article and Find Full Text PDF

Amid global environmental change, the intensification of nitrogen (N) deposition exerts critical impacts on the growth of forest vegetation and the structure and function of ecosystems in subtropical China. However, the physiological and growth response mechanisms of subtropical tree species remain poorly understood. This study explored adaptive mechanisms of typical subtropical tree species to N deposition, analyzing biomass accumulation, root plasticity, and nutrient/photosynthate allocation strategies.

View Article and Find Full Text PDF