Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The attribution of fresh produce to the overall community-associated exposure of humans to ESBL- or AmpC-producing bacteria is currently unknown. To address this issue, the prevalence of ESBL- and AmpC-producing Enterobacteriaceae on fresh produce produced in the Netherlands was determined. Seven vegetable types that are consumed raw were selected: blanched celery, bunched carrots, chicory, endive, iceberg lettuce, mushrooms, and radish. The vegetables were mostly obtained from supermarkets. To determine whether the agricultural environment is the source of ESBL-producing Enterobacteriaceae on fresh produce, iceberg lettuce was also obtained directly from three farms, in conjunction with soil and irrigation water. ESBL-producing Enterobacteriaceae isolated from vegetables and environment were all environmental species: Rahnella aquatilis (n = 119), Serratia fonticola (n = 45) and Pantoea agglomerans (n = 1). ESBL genes of R. aquatilis and S. fonticola were identified as blaRAHN-1 and blaRAHN-2 and blaFONA-1, blaFONA-2, blaFONA-3/6 and blaFONA-5, respectively. For R. aquatilis and S. fonticola, different prevalence numbers were observed using different isolation methods, which could at least partially be explained by an inverse correlation between the level of cefotaxime resistance of these species and incubation temperature. R. aquatilis was isolated from 0 to 46% of soil samples and 11 to 83% of vegetable samples, and S. fonticola from 2 to 60% of soil samples and 0 to 1.3% of vegetable samples. Third generation cephalosporin-resistant faecal Enterobacteriaceae were isolated from 2.7%, 1.3% and 1.1% of supermarket vegetables, iceberg lettuce from farms, and agricultural soil respectively. Faecal Enterobacteriaceae were all identified as Citrobacter and Enterobacter species and, with the exception of one Citrobacter koseri strain, all had phenotypes indicative of constitutive AmpC production. Comparison of fresh produce and its agricultural environment indicates that the Enterobacteriaceae population on fresh produce reflects that of the soil it is grown in. Public health risks associated with exposure to ESBL- and AmpC-producing bacteria through consumption of uncooked fresh produce are diverse. They range from occasional ingestion of 3GC-resistant opportunistic pathogens which may result in difficult-to-treat infections, to frequent ingestion of relatively harmless ESBL-producing environmental bacteria that may therewith constitute a continuously replenished intestinal reservoir facilitating dissemination of ESBL genes to (opportunistic) pathogens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2013.10.006DOI Listing

Publication Analysis

Top Keywords

fresh produce
28
enterobacteriaceae fresh
12
agricultural environment
12
esbl- ampc-producing
12
iceberg lettuce
12
ampc-producing enterobacteriaceae
8
produce agricultural
8
ampc-producing bacteria
8
esbl-producing enterobacteriaceae
8
enterobacteriaceae isolated
8

Similar Publications

Rational design of Pt-integrated SnNbO/BiMoO monolayer S-scheme heterojunction for efficient ethylene removal toward fresh produce preservation.

J Colloid Interface Sci

September 2025

Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China. Electronic address:

Effective removal of ethylene (CH) during fruit and vegetables storage and transport remains a critical challenge for post-harvest preservation. Although S-scheme heterojunctions can improve charge separation and redox capacity for ethylene degradation, their efficiency is still restricted by limited carrier transfer and sluggish oxygen activation. Here, we rationally designed a novel 2D/2D SnNbO/BiMoO monolayer S-scheme heterojunction integrated with Pt co-catalyst to address these limitations.

View Article and Find Full Text PDF

Ultra-rapid freezing in spheres yields a higher cryoresistance than in straws but remains inferior to conventional slow freezing of stallion sperm.

Cryobiology

September 2025

Laboratorio de Biotecnología de la Reproducción Animal, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Cuenca, EC010221, Ecuador. Electronic address:

This study evaluated the cryoresistance of stallion sperm frozen by ultra-rapid (UR) methods using microspheres and straws or by the conventionally-slow (CS) method. Sixteen ejaculates from four stallions were each divided into three aliquots according to the freezing method: UR freezing in 30-μL spheres (UR-Spheres) by direct immersion in liquid nitrogen (LN); UR freezing in 0.25-mL straws (UR-Straws) by direct horizontal submersion in LN; and CS freezing in LN vapors.

View Article and Find Full Text PDF

Listeria monocytogenes is pervasive in agricultural environments and difficult to eradicate from food-processing facilities. Consequently, various foods become contaminated, posing health risks to immunocompromised individuals. This surveillance study aimed to enhance the understanding of the genetic diversity, virulence, plasmid content, sanitizer tolerance, and antibiotic resistance of L.

View Article and Find Full Text PDF

Mechanisms of patulin biodegradation by Wickerhamomyces anomalus XL1 in apple juice.

Food Res Int

November 2025

College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR Chi

Patulin (PAT), a mycotoxin primarily produced by Penicillium species, presents a serious food safety challenge due to its widespread occurrence and harmful health effects. Among current detoxification approaches, yeast-based degradation is particularly promising, offering high efficiency, environmental sustainability, and preservation of food quality-key attributes for industrial application. However, the enzymatic pathways involved and the potential for concurrent quality enhancement remain poorly understood.

View Article and Find Full Text PDF

Detection and genotyping of enteric foodborne viruses in ready-to-eat leafy vegetables and berries from Córdoba, Argentina.

Food Res Int

November 2025

Instituto de Virología "Dr. J. M. Vanella" - Facultad de Ciencias Médicas - Universidad Nacional de Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

The global consumption of ready-to-eat (RTE) leafy green vegetables and berries has risen as consumers perceive them as safe and nutritious options. However, these foods have also been identified as sources of enteric viruses that infect the human gastrointestinal system, which are then excreted and can spread through the fecal-oral route. In Argentina, there is limited evidence on the detection of enteric viruses in food, and no legislation currently requires their detection in frozen or fresh produce intended for domestic consumption.

View Article and Find Full Text PDF