The effect of trapped charge on silicon nanowire pseudo-MOSFETs.

J Nanosci Nanotechnol

Research Center for Time-Domain Nano-Functional Devices, Samsung Advanced Institute of Technology, Giheung, Yongin, Gyeonggi, 446-712, Korea.

Published: September 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The effects of organic molecules grafted on top of silicon nanowires are modeled as the oxide trap charges (Qot) and interface trap charges (Qit). The device investigated here is a pseudo-MOSFET with a thick bottom oxide (200 nm) and only a thin native oxide (5 nm) on top. With Qot = -5.0 x 10(11) cm(-2) and the U-shaped distribution of interface trap density (Dit) as a function of trap energy (Et), the structures are reproduced through the conventional technology computer aided design (TCAD) simulation tool, and the channel is imaginarily divided into several sections (5 x 5 regions) to apply the localized traps. The electrical parameters are extracted from the each part to quantitatively compare their effectiveness. The local position of the grafted molecules, modeled by these charges, is shown to result in strong variations in the relative change in the threshold voltage and subthreshold swing. These variations are explained by the surface depletion and scattering near the edges of the etched device and the series resistance effect.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.7608DOI Listing

Publication Analysis

Top Keywords

trap charges
8
interface trap
8
trapped charge
4
charge silicon
4
silicon nanowire
4
nanowire pseudo-mosfets
4
pseudo-mosfets effects
4
effects organic
4
organic molecules
4
molecules grafted
4

Similar Publications

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF

In charge detection mass spectrometry (CD-MS) ions are trapped in an electrostatic linear ion trap (ELIT) where they oscillate back and forth through a conducting cylinder. The oscillating ions induce a periodic charge separation that is detected by a charge sensitive amplifier (CSA) connected to the cylinder. The resulting time domain signal is analyzed using short-time Fourier transforms to give the mass-to-charge ratio and charge for each ion, which are then multiplied to give the mass.

View Article and Find Full Text PDF

Surface-Driven Electron Localization and Defect Heterogeneity in Ceria.

J Am Chem Soc

September 2025

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.

The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.

View Article and Find Full Text PDF

An electrostatic linear ion trap (ELIT) is used to trap ions between two ion mirrors with image current detection by central detection electrode. Transformation of the time-domain signal to the frequency-domain via Fourier transform (FT) yields an ion frequency spectrum that can be converted to a mass-to-charge scale. Injection of ions into an ELIT from an external ion source leads to a time-of-flight ion separation that ultimately determines the range of over which ions can be collected from a given ion injection step.

View Article and Find Full Text PDF

Enhancing the output of cellulose-based triboelectric nanogenerators via dual interfacial polarization effects.

Carbohydr Polym

November 2025

Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China. Electronic address:

Cellulose-based triboelectric nanogenerators (TENGs) have garnered significant attention in wearable electronics due to their biodegradability and abundant availability. However, the near-electroneutrality of cellulose hinders its advancement and broader application in high-performance TENGs. In this study, the triboelectric polarity of cellulose nanofibers (CNF) is modified by grafting different functional groups, wherein the incorporation of polar sulfonic acid groups enhances the deep trap density on the surface of CNF by an order of magnitude, reduces charge dissipation rates, and increases surface potential by nearly 200 % compared to untreated CNF.

View Article and Find Full Text PDF