Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present study, a novel hydrogel-grafted fabrics embedding of berberine nanosuspension was developed for the treatment of infected wound. Hydrogel-grafted fabric was prepared by graft copolymerization of N-isopropylacrylamide and alginate using ceric ammonium nitrate as initiator. Berberine nanosuspension was prepared and embedded in the hydrogel-grafted fabrics to achieve sustained drug release. The prepared hydrogel-grafted fabrics embedding of berberine nanosuspension was characterized by FT-IR spectroscopy, scanning electron microscopy, and swelling degree studies. Fourier transform infrared spectroscopy revealed that berberine was embedded into the matrix of hydrogel-grafted fabrics, rather than on the surface. Scanning electron microscopy showed that a thin hydrogel layer was formed on the surface of nonwoven fibers. The swelling study showed that hydrogel-grafted fabric had water absorbing characteristic with reversible temperature sensitivity. The drug release study demonstrated that hydrogel-grafted fabrics can be used as a sustained drug delivery system of hydrophobic compounds. The berberine nanosuspension embedded hydrogel-grafted fabric was further investigated in an animal infected wound model and was found to be a very promising wound healing dressing for the treatment and healing of infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0885328213509503DOI Listing

Publication Analysis

Top Keywords

hydrogel-grafted fabrics
24
berberine nanosuspension
20
fabrics embedding
12
embedding berberine
12
infected wound
12
hydrogel-grafted fabric
12
hydrogel-grafted
9
embedded hydrogel-grafted
8
sustained drug
8
drug release
8

Similar Publications

Smart polypropylene (PP) hernia meshes were proposed to detect surgical infections and to regulate cell attachment-modulated properties. For this purpose, lightweight and midweight meshes were modified by applying a plasma treatment for subsequent grafting of a thermosensitive hydrogel, poly(-isopropylacrylamide) (PNIPAAm). However, both the physical treatment with plasma and the chemical processes required for the covalent incorporation of PNIPAAm can modify the mechanical properties of the mesh and thus have an influence in hernia repair procedures.

View Article and Find Full Text PDF

Peripheral nerve injury results in significant sensory and motor functional deficits. Although direct neurorrhaphy in the early phase may reduce its devastating effects, direct end-to-end neurorrhaphy is sometimes impossible owing to a defect at the injured site of the nerve. Autogenous nerve graft is a primary consideration for peripheral nerve defects; however, significant morbidity of the donor site is inevitable.

View Article and Find Full Text PDF

Recent advances in woundcare is targeted towards developing active-dressings, where multiple components are combined to provide a suitable environment for rapid healing. The aim of the present research is to study the preparation of biomimic composite wound dressings by the grafting of hydrogel on silk fibroin fabric. The swelling ability of hydrogel grafted silk fibroin fabric was optimized by changing the initiator concentration.

View Article and Find Full Text PDF

In the present study, a novel hydrogel-grafted fabrics embedding of berberine nanosuspension was developed for the treatment of infected wound. Hydrogel-grafted fabric was prepared by graft copolymerization of N-isopropylacrylamide and alginate using ceric ammonium nitrate as initiator. Berberine nanosuspension was prepared and embedded in the hydrogel-grafted fabrics to achieve sustained drug release.

View Article and Find Full Text PDF