Combining different mRNA capture methods to analyze the transcriptome: analysis of the Xenopus laevis transcriptome.

PLoS One

Department of Molecular Biology Massachusetts General Hospital, Boston, Massachusetts, United States of America ; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America.

Published: June 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

mRNA sequencing (mRNA-seq) is a commonly used technique to survey gene expression from organisms with fully sequenced genomes. Successful mRNA-seq requires purification of mRNA away from the much more abundant ribosomal RNA, which is typically accomplished by oligo-dT selection. However, mRNAs with short poly-A tails are captured poorly by oligo-dT based methods. We demonstrate that combining mRNA capture via oligo-dT with mRNA capture by the 5' 7-methyl guanosine cap provides a more complete view of the transcriptome and can be used to assay changes in mRNA poly-A tail length on a genome-wide scale. We also show that using mRNA-seq reads from both capture methods as input for de novo assemblers provides a more complete reconstruction of the transcriptome than either method used alone. We apply these methods of mRNA capture and de novo assembly to the transcriptome of Xenopus laevis, a well-studied frog that currently lacks a finished sequenced genome, to discover transcript sequences for thousands of mRNAs that are currently absent from public databases. The methods we describe here will be broadly applicable to many organisms and will provide insight into the transcriptomes of organisms with sequenced and unsequenced genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3797054PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077700PLOS

Publication Analysis

Top Keywords

mrna capture
16
combining mrna
8
capture methods
8
xenopus laevis
8
mrna
6
capture
5
methods
5
transcriptome
5
methods analyze
4
analyze transcriptome
4

Similar Publications

Background And Aims: Cholangiopathies, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and post-COVID-19 cholangiopathy (PCC), involve chronic cholangiocyte injury, senescence, epithelial-stromal crosstalk, and progressive fibrosis. However, effective in vitro models to capture these interactions are limited. Here, we present a scaffold-free 3D multilineage spheroid model, composed of hepatocyte-like cells (HepG2), cholangiocytes (H69), and hepatic stellate cells (LX-2), designed to recapitulate early fibrogenic responses driven by senescent cholangiocytes.

View Article and Find Full Text PDF

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions.

View Article and Find Full Text PDF

Single-cell multi-omics technologies are pivotal for deciphering the complexities of biological systems, with Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) emerging as a particularly valuable approach. The dual-modality capability makes CITE-seq particularly advantageous for dissecting cellular heterogeneity and understanding the dynamic interplay between transcriptomic and proteomic landscapes. However, existing computational models for integrating these two modalities often struggle to capture the complex, non-linear interactions between RNA and antibody-derived tags (ADTs), and are computationally intensive.

View Article and Find Full Text PDF

Structural basis for ligand recognition in the tobramycin riboswitch.

Nucleic Acids Res

August 2025

Institute for Molecular Biosciences and Center of Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt, Germany.

Recently, a novel tobramycin-responsive riboswitch was developed by a combination of Capture-SELEX and in vivo screening. This riboswitch regulates translation initiation in eukaryotes with a high dynamic range and remarkable ligand affinity and selectivity. Its secondary structure differs from all previously described aminoglycoside-binding RNA motifs, suggesting a novel mode of ligand recognition.

View Article and Find Full Text PDF