Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many attempts to demonstrate the oncogenic role of the JC virus (JCV) have been partially successful in producing brain tumors, either by direct inoculation of JCV into the brain or in transgenic models in rodents. We previously reported the presence of JCV DNA with a relatively high incidence in pulmonary and digestive organs. However, we could not prove the oncogenic role of JCV. We prepared a transgene composed of the K19 promoter, specific to bronchial epithelium with the JCV T-antigen and established transgenic (TG) mice. Pulmonary tumors were detected without any metastasis in 2 out of 15 (13.3%) 16-month-old K19/JCV T-antigen TG mice. Using immunohistochemistry (IHC), these tumors showed JCV T-antigen, p53 and CK 19 expression, but not expression of nuclear and cytoplasmic β-catenin and insulin receptor substrate 1 (IRS1). IHC revealed the same expression pattern as in the bronchial epithelium of the TG mice. One tumor, which was examined with laser capture microdissection and molecular biological tools, demonstrated an EGFR mutation but not a K-ras mutation. We propose that the pulmonary tumors were derived from the JCV T-antigen in a TG mouse model. These findings shed light on pulmonary carcinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839992PMC
http://dx.doi.org/10.3892/or.2013.2782DOI Listing

Publication Analysis

Top Keywords

pulmonary tumors
12
jcv t-antigen
12
mouse model
8
oncogenic role
8
bronchial epithelium
8
jcv
7
pulmonary
5
t-antigen
5
tumors associated
4
associated virus
4

Similar Publications

The MET receptor tyrosine kinase is a pivotal regulator of cellular survival, motility, and proliferation. Mutations leading to skipping of exon 14 (METΔex14) within the juxtamembrane domain of MET impair receptor degradation and prolong oncogenic signaling, contributing significantly to tumor progression across multiple cancer types. METΔex14 mutations are associated with aggressive clinical behavior, therapeutic resistance, and poor outcomes.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are critical regulators of gene expression in cancer biology, yet their spatial dynamics within tumor microenvironments (TMEs) remain underexplored due to technical limitations in current spatial transcriptomics (ST) technologies. To address this gap, we present STmiR, a novel XGBoost-based framework for spatially resolved miRNA activity prediction. STmiR integrates bulk RNA-seq data (TCGA and CCLE) with spatial transcriptomics profiles to model nonlinear miRNA-mRNA interactions, achieving high predictive accuracy (Spearman's ρ > 0.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF

Importance: Patients with advanced cancer frequently receive broad-spectrum antibiotics, but changing use patterns across the end-of-life trajectory remain poorly understood.

Objective: To describe the patterns of broad-spectrum antibiotic use across defined end-of-life intervals in patients with advanced cancer.

Design, Setting, And Participants: This nationwide, population-based, retrospective cohort study used data from the South Korean National Health Insurance Service database to examine broad-spectrum antibiotic use among patients with advanced cancer who died between July 1, 2002, and December 31, 2021.

View Article and Find Full Text PDF