Publications by authors named "Takashi Ohtsu"

Objective: Endometrial cancer is the most common gynaecological cancer, and most patients are identified during early disease stages. Noninvasive evaluation of lymph node metastasis likely will improve the quality of clinical treatment, for example, by omitting unnecessary lymphadenectomy.

Methods: The study population comprised 611 patients with endometrial cancer who underwent lymphadenectomy at four types of institutions, comprising seven hospitals in total.

View Article and Find Full Text PDF

The feasibility of a short-term, three-dimensional (3D) culture-based drug sensitivity test (DST) for surgically resected malignant bone tumors, including osteosarcoma (OS), was evaluated utilizing two OS cell line (KCS8 or KCS9)-derived xenograft (CDX) models. Twenty-three (KCS8) or 39 (KCS9) of 60 tested drugs were likely effective in OS cells derived from a cell line before xenografting. Fewer drugs (19: KCS8, 26: KCS9) were selected as effective drugs in cells derived from a CDX tumor, although the drug sensitivities of 60 drugs significantly correlated between both types of samples.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors are used as first-line treatment for non-small cell lung cancer (NSCLC) patients harboring driver mutations in EGFR, ALK, ROS1, and BRAF. Currently, standard molecular testing approaches help identify single genes for such targetable driver mutations in NSCLC; however, next-generation sequencing (NGS)-based genetic profiling provides a more comprehensive approach and is hence strongly recommended. This case study aimed to highlight the benefits of NGS-based tests for the diagnosis of complex EGFR L858R mutations.

View Article and Find Full Text PDF

Viable and stable human cancer cell lines and animal models combined with adequate clinical information are essential for future advances in cancer research and patient care. Conventional in vitro cancer cell lines are commonly available; however, they lack detailed information on the patient from which they originate, including disease phenotype and drug sensitivity. Patient-derived xenografts (PDX) with clinical information (so-called 'cancer xenopatients') are a promising advance that may accelerate the development of anticancer therapies.

View Article and Find Full Text PDF

Display technologies are procedures used for isolating target-recognizing peptides without using immunized animals. In this study, we describe a new display method, named Hishot display, that uses Escherichia coli and an expression plasmid to isolate target-recognizing peptides. This display method is based on the formation, in bacteria, of complexes between a polyhistidine (His)-tagged peptide including random sequences and the peptide-encoding mRNA including an RNA aptamer against the His-tag.

View Article and Find Full Text PDF

Many attempts to demonstrate the oncogenic role of the JC virus (JCV) have been partially successful in producing brain tumors, either by direct inoculation of JCV into the brain or in transgenic models in rodents. We previously reported the presence of JCV DNA with a relatively high incidence in pulmonary and digestive organs. However, we could not prove the oncogenic role of JCV.

View Article and Find Full Text PDF

Polyhistidine-tag (His-tag) is a powerful tool for purification of recombinant protein. His-tagged protein can be affinity-purified by using resins immobilizing Ni2+ or anti-His-tag antibodies. However, Ni2+-affinity-purification is prevented by the presence of divalent cations.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional SELEX methods can be complex and often require multiple attempts or special equipment to isolate aptamers effectively.
  • * The study introduces a new SELEX approach that reduces PCR bias by using RNA transcription for amplification, simplifying the process and allowing the successful isolation of a greater number of RNA aptamers.
View Article and Find Full Text PDF

Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Here we demonstrate that an RNA aptamer selected against eukaryotic initiation factor 4A (eIF4A) serves as an efficient biosensor. The aptamer, when immobilized to resin, purifies eIF4A from crude cell extracts by affinity pull-down, and 32P-labeled aptamer can detect some 300 ng of eIF4A by dot-blot analysis.

View Article and Find Full Text PDF

Intelectin is an extracellular animal lectin found in chordata. Although human and mouse intelectin-1 recognize galactofuranosyl residues included in cell walls of various microorganisms, the physiological function of mammalian intelectin had been unclear. In this study, we found that human intelectin-1 was a serum protein and bound to Mycobacterium bovis bacillus Calmette-Guérin (BCG).

View Article and Find Full Text PDF

Isolation of anti-protein aptamers is typically carried out against purified recombinant protein. Thus, certain cell surface proteins including pharmacologically important receptors do not become targets of aptamers due to the difficulties encountered in their purification. In order to overcome this limitation, we developed a new SELEX procedure in which cells displaying the target protein on the cell surface are used, thereby precluding the need for target purification.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4G (eIF4G) plays a crucial multimodulatory role in mRNA translation and decay by interacting with other translation factors and mRNA-associated proteins. In this study, we isolated eight different RNA aptamers with high affinity to mammalian eIF4G by in vitro RNA selection amplification. Of these, three aptamers (apt3, apt4, and apt5) inhibited the cap-dependent translation of two independent mRNAs in a rabbit reticulocyte lysate system.

View Article and Find Full Text PDF

Seasonal hibernation in mammals is under a unique adaptation system that protects organisms from various harmful events, such as lowering of body temperature (Tb), during hibernation. However, the precise factors controlling hibernation remain unknown. We have previously demonstrated a decrease in hibernation-specific protein (HP) complex in the blood of chipmunks during hibernation.

View Article and Find Full Text PDF

In most cases, anti-protein aptamers are selected by systematic evolution of ligands by exponential enrichment (SELEX) using purified recombinant protein targets. Cell surface proteins, however, are not easy targets for SELEX due to the difficulties associated with their purification. Here, we developed a novel SELEX procedure (referred to as TECS-SELEX) in which cell-surface displayed recombinant protein is directly used as the selection target.

View Article and Find Full Text PDF

A high affinity RNA aptamer (APT58, 58 nt long) against mammalian initiation factor 4A (eIF4A) requires nearly its entire nucleotide sequence for efficient binding. Since splitting either APT58 or eIF4A into two domains diminishes the affinity for each other, it is suggested that multiple interactions or a global interaction between the two molecules accounts for the high affinity. To understand the structural basis of APT58's global recognition of eIF4A, we determined the solution structure of two essential nucleotide loops (AUCGCA and ACAUAGA) within the aptamer using NMR spectroscopy.

View Article and Find Full Text PDF

The eukaryotic translation initiation factor 4F (eIF4F) consists of three polypeptides (eIF4A, eIF4G, and eIF4E) and is responsible for recruiting ribosomes to mRNA. eIF4E recognizes the mRNA 5'-cap structure (m7GpppN) and plays a pivotal role in control of translation initiation, which is the rate-limiting step in translation. Overexpression of eIF4E has a dramatic effect on cell growth and leads to oncogenic transformation.

View Article and Find Full Text PDF

The receptor activator of NF-kappaB (RANK) is a member of the tumor necrosis factor (TNF) receptor family and acts to cause osteoclastgenesis through the interaction with its ligand, RANKL. We isolated RNA aptamers with high affinity to human RANK by SELEX. Sequence and mutational analysis revealed that the selected RNAs form a G-quartet conformation that is crucial for binding to RANK.

View Article and Find Full Text PDF

The mammalian translation initiation factor 4A (eIF4A) is a prototype member of the DEAD-box RNA helicase family that couples ATPase activity to RNA binding and unwinding. In the crystal form, eIF4A has a distended "dumbbell" structure consisting of two domains, which probably undergo a conformational change, on binding ATP, to form a compact, functional structure via the juxtaposition of the two domains. Moreover, additional conformational changes between two domains may be involved in the ATPase and helicase activity of eIF4A.

View Article and Find Full Text PDF