Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809537PMC
http://dx.doi.org/10.1105/tpc.113.113589DOI Listing

Publication Analysis

Top Keywords

cultivated rice
20
an-1 locus
16
awn loss
12
an-1
9
an-1 encodes
8
encodes basic
8
basic helix-loop-helix
8
helix-loop-helix protein
8
protein regulates
8
regulates awn
8

Similar Publications

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

pv. is a pathogen of rice responsible for bacterial leaf streak, a disease that can cause up to 32% yield loss. While it was first reported a century ago in Asia, its first report in Africa was in the 1980s.

View Article and Find Full Text PDF

Dataset of rice growth for saline-alkaline tolerance screening.

Data Brief

October 2025

Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.

This dataset exhibits the growth profile of multiple rice varieties, most of which include world or Japanese rice core collections, under saline-alkaline conditions through two screenings. In both the first and second screenings, the rice plants were hydroponically cultivated for 4 weeks under normal conditions and then subjected to control or saline-alkaline conditions for 2 weeks. In the first screening, dry weight, dry weight ratio, and SPAD values were measured, and candidate varieties possessing saline-alkaline tolerance (7 varieties) or sensitivity (3 varieties) were selected based on the dry weight ratio.

View Article and Find Full Text PDF

Introduction: Image and near-infrared (NIR) spectroscopic data are widely used for constructing analytical models in precision agriculture. While model interpretation can provide valuable insights for quality control and improvement, the inherent ambiguity of individual image pixels or spectral data points often hinders practical interpretability when using raw data directly. Furthermore, the presence of imbalanced datasets can lead to model overfitting and consequently, poor robustness.

View Article and Find Full Text PDF

Cadmium telluride quantum dots (CdTe QDs) have been increasing in the environment because of their large application in solar panels and biological industries. However, the potential role and bioaccumulation behavior of CdTe QDs in plants are unknown. Herein, the toxicity of CdTe QDs on the growth and the underlying mechanisms were explored in rice.

View Article and Find Full Text PDF