Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation.

Plant Physiol

Sibley School of Mechanical and Aerospace Engineering , Kavli Institute at Cornell for Nanoscale Science and Technology, Cornell University, Ithaca, New York 14853-5201.

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In perfusion experiments, the hydraulic conductance of stem segments ( ) responds to changes in the properties of the perfusate, such as the ionic strength ( ), pH, and cationic identity. We review the experimental and theoretical work on this phenomenon. We then proceed to explore the hypothesis that electrokinetic effects in the bordered pit membrane (BPM) contribute to this response. In particular, we develop a model based on electroviscosity in which hydraulic conductance of an electrically charged porous membrane varies with the properties of the electrolyte. We use standard electrokinetic theory, coupled with measurements of electrokinetic properties of plant materials from the literature, to determine how the conductance of BPMs, and therefore , may change due to electroviscosity. We predict a nonmonotonic variation of with with a maximum reduction of 18%. We explore how this reduction depends on the characteristics of the sap and features of the BPM, such as pore size, density of chargeable sites, and their dissociation constant. Our predictions are consistent with changes in observed for physiological values of sap and pH. We conclude that electroviscosity is likely responsible, at least partially, for the electrolyte dependence of conductance through pits and that electroviscosity may be strong enough to play an important role in other transport processes in xylem. We conclude by proposing experiments to differentiate the impact of electroviscosity on from that of other proposed mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793074PMC
http://dx.doi.org/10.1104/pp.113.219774DOI Listing

Publication Analysis

Top Keywords

hydraulic conductance
12
impact electroviscosity
8
electroviscosity hydraulic
8
bordered pit
8
pit membrane
8
conductance
5
electroviscosity
5
conductance bordered
4
membrane theoretical
4
theoretical investigation
4

Similar Publications

Phosphogypsum and Carbide Slag Synergy for Red Mud Soil Stabilization: Mechanical Performance, Environmental Impacts, and Micro-scale Mechanisms.

Environ Res

September 2025

China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:

The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.

View Article and Find Full Text PDF

Divergent leaf water strategies in three coexisting desert shrub species: from the perspective of hydraulic, stomatal, and economic traits.

Tree Physiol

September 2025

Linze Inland River Basin Research Station, State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e.

View Article and Find Full Text PDF

Stomatal regulation, leaf water relations, and leaf phenology are coordinated in tree species from the Sonoran Desert.

AoB Plants

October 2025

Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.

To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.

View Article and Find Full Text PDF

Physics-informed neural network for hydraulic prediction in open-channel water transfer projects with sparse monitoring data.

Water Res

August 2025

College of Agriculture Science and Engineering, Hohai University, Nanjing 210098, China; College of Hydraulic and Civil Engineering, XiZang Agriculture and Animal Husbandry College, Linzhi 860000, China. Electronic address:

Open-channel water transfer projects play a crucial role in addressing regional water supply-demand imbalances, and real-time, comprehensive, and accurate acquisition of their hydrodynamic spatiotemporal evolution is essential for ensuring safety and efficiency of water conveyance and optimizing scheduling strategies. While hydraulic monitoring systems and numerical simulations are potential solutions, the former struggles to balance the number of monitoring points with cost constraints to achieve comprehensive and economically feasible measurements, and the latter requires clear boundary conditions and key parameters that often pose challenges in practical scenarios. This paper presents a Physics-Informed Neural Network (PINN)-based method applied to predicting hydraulic transients in open channels, incorporating sparse monitoring data and physical laws.

View Article and Find Full Text PDF

Urban drainage systems are crucial pathways for the transport of terrestrial microplastics (MPs) to urban rivers. This study investigates the impact of the bed morphology on the transport of MPs at a laboratory-scale 90° confluence between an open channel and a pipeline. A series of flume experiments were conducted to identify the bed morphology and MPs distribution downstream the confluence junction for different confluence discharge ratios (Q/Q) and pipe heights (h).

View Article and Find Full Text PDF