98%
921
2 minutes
20
Foot-and-mouth disease virus (FMDV) is responsible for substantial economic losses in livestock breeding each year, and the development of new strategies is needed to overcome the limitations of existing vaccines and antiviral drugs. In this study, we evaluated the antiviral potential of transgenic porcine cells and suckling mice that simultaneously expressed two short-hairpin RNAs (shRNAs) targeting the conserved regions of the viral polymerase protein 3D and the non-structural protein 2B. First, two recombinant shRNA-expressing plasmids, PB-EN3D2B and PB-N3D2B, were constructed and the efficiency of the constructs for suppressing an artificial target was demonstrated in BHK-21 cells. We then integrated PB-EN3D2B into the genome of the porcine cell line IBRS-2 using the piggyBac transposon system, and stable monoclonal transgenic cell lines (MTCL) were selected. Of the 6 MTCL that were used in the antiviral assay, 3 exhibited significant resistance with suppressing ratios of more than 94% at 48 hours post-challenge (hpc) to both serotype O and serotype Asia 1 FMDV. MTCL IB-3D2B-6 displayed the strongest antiviral activity, which resulted in 100% inhibition of FMDV replication until 72 hpc. Moreover, the shRNA-expressing fragment of PB-N3D2B was integrated into the mouse genome by DNA microinjection to produce transgenic mice. When challenged with serotype O FMDV, the offspring of the transgenic mouse lines N3D2B-18 and N3D2B-81 exhibited higher survival rates of 19% to 27% relative to their non-transgenic littermates. The results suggest that these heritable shRNAs were able to suppress FMDV replication in the transgenic cell lines and suckling mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3716715 | PMC |
http://dx.doi.org/10.1186/1297-9716-44-47 | DOI Listing |
J Proteome Res
September 2025
School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.
Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Sivas Cumhuriyet University, Faculty of Medicine, Department of Medical Microbiology, 58140 Sivas, Türkiye.
Aims: The increasing antimicrobial resistance, particularly in Acinetobacter baumannii, complicates the treatment of infections, leading to higher morbidity, mortality, and economic costs. Herein, we aimed to determine the in vitro antimicrobial, synergistic, and antibiofilm activities of colistin (COL), meropenem, and ciprofloxacin antibiotics, and curcumin, punicalagin, geraniol (GER), and linalool (LIN) plant-active ingredients alone and in combination against 31 multidrug-resistant (MDR) A. baumannii clinical isolates.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Urology, Second Xiangya Hospital, Central South University, Changsha 410011, China.
Objectives: Bladder cancer is a common malignancy with high incidence and poor prognosis. N-methyladenosine (mA) modification is widely involved in diverse physiological processes, among which the mA recognition protein YTH N-methyladenosine RNA binding protein F2 (YTHDF2) plays a crucial role in bladder cancer progression. This study aims to elucidate the molecular mechanism by which O-linked -acetylglucosamine (O-GlcNAc) modification of YTHDF2 regulates its downstream target, period circadian regulator 1 (), thereby promoting bladder cancer cell proliferation.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
May 2025
Department of Information Network Center, Third Xiangya Hospital, Central South University, Changsha 410013, China.
Objectives: Increasing detection of low-risk papillary thyroid carcinoma (PTC) is associated with overdiagnosis and overtreatment. N6-methyladenosine (mA)-mediated microRNA (miRNA) dysregulation plays a critical role in tumor metastasis and progression. However, the functional role of mA-miRNAs in PTC remains unclear.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDF