Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report on a novel elastico-mechanoluminescence (EML) phosphor of CaZr(PO4)2:Eu2+ for simultaneous luminescent sensing and imaging to mechanical load by the light-emitting of Eu2+ ions. The EML properties of CaZr(PO4)2:Eu2+ show an intense luminance (above 15 mcd m(-2)), a low load threshold (below 5 N), a broad measurement range for the dynamic load (up to 2000 N), and an accurate linear relationship of EML intensity against the applied load. The excellent EML characteristics are considered to originate from the piezoelectric crystal structure and the multiple trap levels with appropriate depths. An EML mechanism based on the electrons as the main charge carriers is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.013699DOI Listing

Publication Analysis

Top Keywords

multiple trap
8
trap levels
8
eml
5
elastico-mechanoluminescence cazrpo42eu2+
4
cazrpo42eu2+ multiple
4
levels report
4
report novel
4
novel elastico-mechanoluminescence
4
elastico-mechanoluminescence eml
4
eml phosphor
4

Similar Publications

Dual-epitope targeting of TSLP to simultaneously block TSLPR and IL-7Rα with a Biparatopic nanobody.

Int Immunopharmacol

September 2025

Key Laboratory for Biorheological Science and Technology of Chinese Ministry of Education, National Local Joint Engineering Lab for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400044, China; JinFeng Laboratory, Chongqing, 401329, China. Electronic address: wanggx@cq

Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that plays a crucial role in the pathophysiology of asthma, initiating multiple allergic cascade responses. Tezepelumab is the only monoclonal antibody currently approved for marketing, which acts by blocking TSLP binding to TSLPR. However, it is reported that a TSLP trap which simultaneously block TSLP binding with TSLPR and IL-7Rα has better efficiency in the repression of TSLP signal pathway.

View Article and Find Full Text PDF

Enolase-1 (ENO1) is a moonlighting protein with multiple functions. When expressed on the cell surface, ENO1 binds plasminogen (PLG) and promotes cell migration by facilitating plasmin (PLM)-mediated extracellular matrix degradation. Here, we observed that inflammatory stimulation significantly upregulated ENO1 expression on the neutrophil surface, both in vitro and in vivo.

View Article and Find Full Text PDF

Dimethyl fumarate mitigates osteoarthritis progression through Nrf2 activation-mediated suppression of oxidative stress and subchondral osteoclastogenesis.

Int Immunopharmacol

September 2025

Department of Orthopaedics, The Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China. Electronic address:

Osteoarthritis (OA) is a degenerative joint disease associated with imbalanced subchondral bone remodeling, and there is currently no curative treatment available. In OA, excessive osteoclast activity leads to bone loss and inflammatory responses. Dimethyl fumarate (DMF), an Nrf2 activator already used in treating psoriasis and multiple sclerosis, may alleviate OA by suppressing oxidative stress and osteoclastogenesis.

View Article and Find Full Text PDF

Parallelization has revolutionized computing and DNA sequencing but remains largely unexploited in mass spectrometry (MS), which typically analyzes ions sequentially. We introduce a nature-inspired ion trap (MultiQ-IT) that enables massively parallel MS. The device comprises a cubic array of small quadrupoles forming multiple ion entry and exit ports, allowing >10⁹ ions to be confined and manipulated simultaneously.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based single-cell proteomics, while highly challenging, offers unique potential for a wide range of applications to interrogate cellular heterogeneity, trajectories, and phenotypes at a functional level. We report here the development of the spectral library-based multiplex segmented selected ion monitoring (SLB-msSIM) method, a conceptually unique approach with significantly enhanced sensitivity and robustness for single-cell analysis. The single-cell MS data is acquired by a multiplex segmented selected ion monitoring (msSIM) technique, which sequentially applies multiple isolation cycles with the quadrupole using a wide isolation window in each cycle to accumulate and store precursor ions in the C-trap for a single scan in the Orbitrap.

View Article and Find Full Text PDF