Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A modified splicing with overlap extension PCR (SOE-PCR) was generated to introduce 21 TGA to TGG at Mycoplasma gallisepticum MGA_0329 gene. The recombinant protein was successfully expressed and retained neuraminidase activities, indicating that SOE-PCR is a rapid and highly efficient method of introducing multiple mutations into large M. gallisepticum genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2013.05.013DOI Listing

Publication Analysis

Top Keywords

method introducing
8
introducing multiple
8
multiple mutations
8
mycoplasma gallisepticum
8
soe-pcr method
4
mutations mycoplasma
4
gallisepticum neuraminidase
4
neuraminidase modified
4
modified splicing
4
splicing overlap
4

Similar Publications

Perceived stress and compulsive buying among Saudi adults: the mediation role of rumination.

BMC Psychol

September 2025

Department of Psychology, Faculty of Arts and Humanities, King Abdulaziz University, Jeddah, Saudi Arabia.

Objectives/background: Prior studies have claimed that people engage in compulsive buying in an attempt to deal with stress. Nonetheless, not every stressed person engages in compulsive buying. It is therefore important to investigate the cognitive mechanisms underlying such behavior.

View Article and Find Full Text PDF

Widefield acoustics heuristic: advancing microphone array design for accurate spatial tracking of echolocating bats.

BMC Ecol Evol

September 2025

Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.

Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.

View Article and Find Full Text PDF

Simulated metabolic profiles reveal biases in pathway analysis methods.

Metabolomics

September 2025

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.

View Article and Find Full Text PDF

Although dynamical systems models are a powerful tool for analysing microbial ecosystems, challenges in learning these models from complex microbiome datasets and interpreting their outputs limit use. We introduce the Microbial Dynamical Systems Inference Engine 2 (MDSINE2), a Bayesian method that learns compact and interpretable ecosystems-scale dynamical systems models from microbiome timeseries data. Microbial dynamics are modelled as stochastic processes driven by interaction modules, or groups of microbes with similar interaction structure and responses to perturbations, and additionally, noise characteristics of data are modelled.

View Article and Find Full Text PDF

With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts.

View Article and Find Full Text PDF