Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA methyltransferases (MTases) catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the 5-positon of cytosine in CpG islands, eventually inducing the DNA methylation in both prokaryotes and eukaryotes. Despite the development of various methods for the MTase assay, most of them are laborious and costly with poor sensitivity. Herein, we develop a highly sensitive chemiluminescence method for the MTase assay using hairpin probe-based primer generation rolling circle amplification (PG-RCA). In the presence of DNA adenine methylation (Dam) MTase, the methylation-responsive sequence of hairpin probe is methylated and cleaved by the methylation-sensitive restriction endonuclease Dpn I. The cleaved hairpin probe then functions as a signal primer to initiate PG-RCA reaction by hybridizing with the circular DNA template, producing a large number of horseradish peroxidase-mimicking DNAzyme chains, which can catalyze the oxidation of luminal by H2O2 in the presence of hemin to yield distinct chemiluminescence signal. While in the absence of Dam MTase, neither methylation/cleavage nor PG-RCA reaction can be initiated and no chemiluminescence signal is observed. The proposed method exhibits a wide dynamic range from 0.025 to 400 U/mL and an extremely low detection limit of 1.29 × 10(-4) U/mL, which is superior to most conventional approaches for the MTase assay. This method can be used for the screening of antimicrobial drugs and has a great potential to be further applied in early clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac4011292DOI Listing

Publication Analysis

Top Keywords

mtase assay
12
hairpin probe-based
8
probe-based primer
8
primer generation
8
generation rolling
8
rolling circle
8
dam mtase
8
hairpin probe
8
pg-rca reaction
8
chemiluminescence signal
8

Similar Publications

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF

Restriction-modification (RM) systems are widespread defense mechanisms in prokaryotes that protect the host from potentially harmful foreign DNA. They typically consist of a DNA methyltransferase (MTase), which methylates the host genome at an adenine (6 mA methylation) or cytosine (4mC or 5mC), and a restriction endonuclease (REase), which cleaves foreign, unmethylated DNA. In addition to the 2023 published family of 5mC-MTases, an HgaI-homolog RM system was detected in Mycoplasma hominis with the more rare constellation of two 5mC MTase genes, called RM.

View Article and Find Full Text PDF

Monkeypox (Mpox), an emerging global health threat, necessitates the development of effective antiviral agents. In our study, we selected the Mpox virus methyltransferase VP39 (MTase) protein due to its role in viral replication and immune evasion. The MTase protein is essential in Mpox and is associated with similar replication mechanisms in other viruses like COVID-19, making it a broad-spectrum target for antiviral therapy.

View Article and Find Full Text PDF

DNA-polyarginine probe-enabled nanopore Sensing for ultrasensitive detection of Dam methyltransferase activity and inhibition.

Biosens Bioelectron

December 2025

China Academy of Engineering Physics, Mianyang, 621000, China. Electronic address:

Aberrant DNA methyltransferase (DNA MTase) activity correlates with abnormal DNA methylation patterns observed in various cancers, establishing DNA MTase as a therapeutic target for early clinical diagnosis and anticancer/antimicrobial treatment. Current DNA MTase detection methods remain laborious and technically challenging. This study presents a label-free, single-molecule nanopore sensing strategy for sensitive Dam MTase detection utilizing a DNA-polyarginine (DNA-R5) probe.

View Article and Find Full Text PDF

Dengue virus (DENV) infects over 100 million people annually, yet no approved antiviral therapies are available. The DENV genome is a positive-sense single-stranded RNA (+) ssRNA) encoding ten proteins: three structural (capsid, membrane, and envelope) and seven non-structural (NS1-NS5). Among these, the NS5 methyltransferase (NS5-MTase) is essential for viral replication and is a promising drug target due to the absence of approved inhibitors.

View Article and Find Full Text PDF