A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps. | LitMetric

Synchronization modulation increases transepithelial potentials in MDCK monolayers through Na/K pumps.

PLoS One

Institute for Regenerative Cures, Departments of Dermatology and Ophthalmology, University of California Davis, Davis, California, United States of America.

Published: October 2013


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transepithelial potential (TEP) is the voltage across a polarized epithelium. In epithelia that have active transport functions, the force for transmembrane flux of an ion is dictated by the electrochemical gradient in which TEP plays an essential role. In epithelial injury, disruption of the epithelial barrier collapses the TEP at the wound edge, resulting in the establishment of an endogenous wound electric field (∼100 mV/mm) that is directed towards the center of the wound. This endogenous electric field is implicated to enhance wound healing by guiding cell migration. We thus seek techniques to enhance the TEP, which may increase the wound electric fields and enhance wound healing. We report a novel technique, termed synchronization modulation (SM) using a train of electric pulses to synchronize the Na/K pump activity, and then modulating the pumping cycles to increase the efficiency of the Na/K pumps. Kidney epithelial monolayers (MDCK cells) maintain a stable TEP and transepithelial resistance (TER). SM significantly increased TEP over four fold. Either ouabain or digoxin, which block Na/K pump, abolished SM-induced TEP increases. In addition to the pump activity, basolateral distribution of Na/K pumps is essential for an increase in TEP. Our study for the first time developed an electrical approach to significantly increase the TEP. This technique targeting the Na/K pump may be used to modulate TEP, and may have implication in wound healing and in diseases where TEP needs to be modulated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621860PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0061509PLOS

Publication Analysis

Top Keywords

na/k pumps
12
wound healing
12
na/k pump
12
tep
11
synchronization modulation
8
wound electric
8
electric field
8
enhance wound
8
pump activity
8
increase tep
8

Similar Publications