98%
921
2 minutes
20
The optical transparency and the small dimensions of zebrafish at the larval stage make it a vertebrate model of choice for brain-wide in-vivo functional imaging. However, current point-scanning imaging techniques, such as two-photon or confocal microscopy, impose a strong limit on acquisition speed which in turn sets the number of neurons that can be simultaneously recorded. At 5 Hz, this number is of the order of one thousand, i.e., approximately 1-2% of the brain. Here we demonstrate that this limitation can be greatly overcome by using Selective-plane Illumination Microscopy (SPIM). Zebrafish larvae expressing the genetically encoded calcium indicator GCaMP3 were illuminated with a scanned laser sheet and imaged with a camera whose optical axis was oriented orthogonally to the illumination plane. This optical sectioning approach was shown to permit functional imaging of a very large fraction of the brain volume of 5-9-day-old larvae with single- or near single-cell resolution. The spontaneous activity of up to 5,000 neurons was recorded at 20 Hz for 20-60 min. By rapidly scanning the specimen in the axial direction, the activity of 25,000 individual neurons from 5 different z-planes (approximately 30% of the entire brain) could be simultaneously monitored at 4 Hz. Compared to point-scanning techniques, this imaging strategy thus yields a ≃20-fold increase in data throughput (number of recorded neurons times acquisition rate) without compromising the signal-to-noise ratio (SNR). The extended field of view offered by the SPIM method allowed us to directly identify large scale ensembles of neurons, spanning several brain regions, that displayed correlated activity and were thus likely to participate in common neural processes. The benefits and limitations of SPIM for functional imaging in zebrafish as well as future developments are briefly discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620503 | PMC |
http://dx.doi.org/10.3389/fncir.2013.00065 | DOI Listing |
Alzheimers Dement
September 2025
Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China.
Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.
View Article and Find Full Text PDFClimacteric
September 2025
Obstetrics and Gynecology Department, Marmara University School of Medicine, Istanbul, Turkey.
Objective: This study aimed to investigate the association between the day-to-day impact of vaginal aging and female sexual function among postmenopausal Turkish women.
Method: The McCoy Female Sexuality Questionnaire (MFSQ) and the Day-to-Day Impact of Vaginal Aging (DIVA) questionnaire were distributed to 195 postmenopausal women. The most bothersome vulvovaginal symptoms were recorded.
Pediatr Transplant
November 2025
Division of Urology, University of Toronto, Toronto, Canada.
Introduction: Differentiating acute tubular necrosis (ATN) from rejection in pediatric kidney transplant (KT) recipients remains challenging and necessitates invasive biopsy. Doppler ultrasound-derived resistive index (RI) is a noninvasive modality to assess graft status, but its diagnostic utility in children is unclear. This study evaluates RI's ability to distinguish ATN and rejection in KT.
View Article and Find Full Text PDFStroke
September 2025
Brain Language Laboratory, Freie Universität Berlin, Germany (A.-T.P.J., M.R.O., A.S., F.P.).
Background: Intensive language-action therapy treats language deficits and depressive symptoms in chronic poststroke aphasia, yet the underlying neural mechanisms remain underexplored. Long-range temporal correlations (LRTCs) in blood oxygenation level-dependent signals indicate persistence in brain activity patterns and may relate to learning and levels of depression. This observational study investigates blood oxygenation level-dependent LRTC changes alongside therapy-induced language and mood improvements in perisylvian and domain-general brain areas.
View Article and Find Full Text PDFStroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.