98%
921
2 minutes
20
A fundamental feature of embryonic patterning is the ability to scale and maintain stable proportions despite changes in overall size, for instance during growth. A notable example occurs during vertebrate segment formation: after experimental reduction of embryo size, segments form proportionally smaller, and consequently, a normal number of segments is formed. Despite decades of experimental and theoretical work, the underlying mechanism remains unknown. More recently, ultradian oscillations in gene activity have been linked to the temporal control of segmentation; however, their implication in scaling remains elusive. Here we show that scaling of gene oscillation dynamics underlies segment scaling. To this end, we develop a new experimental model, an ex vivo primary cell culture assay that recapitulates mouse mesoderm patterning and segment scaling, in a quasi-monolayer of presomitic mesoderm cells (hereafter termed monolayer PSM or mPSM). Combined with real-time imaging of gene activity, this enabled us to quantify the gradual shift in the oscillation phase and thus determine the resulting phase gradient across the mPSM. Crucially, we show that this phase gradient scales by maintaining a fixed amplitude across mPSM of different lengths. We identify the slope of this phase gradient as a single predictive parameter for segment size, which functions in a size- and temperature-independent manner, revealing a hitherto unrecognized mechanism for scaling. Notably, in contrast to molecular gradients, a phase gradient describes the distribution of a dynamical cellular state. Thus, our phase-gradient scaling findings reveal a new level of dynamic information-processing, and provide evidence for the concept of phase-gradient encoding during embryonic patterning and scaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature11804 | DOI Listing |
Anal Methods
September 2025
Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China.
A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
To characterize the bioaccessibility of inhaled organophosphate esters (OPEs) in the respiratory tract, we employed a highly idealized mouth-throat model to investigate the occurrence, distribution, and deposition of 17 OPEs in airborne particulate matter (PM, PM, and PM; = 80 pairs) and gas phases ( = 48) under gradient temperature and humidity. OPEs concentrations were also measured in exhaled breath condensate (EBC; = 50) and sputum ( = 30) from 30 adults. Total median ∑OPEs concentrations in inhaled air were 4.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Phase I Clinical Trial Research Ward, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is an emerging global health concern, and its presence increases the risk of multi-system diseases. This study aimed to investigate the multimorbidity trajectories of chronic diseases in people living with MASLD.
Methods: We identified 137 859 MASLD patients in UK Biobank and used 'propensity score matching' to match an equal number of non-MASLD controls.
ACS Omega
September 2025
Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon.
Fractal growth in reaction-diffusion frameworks (RDF) offers a powerful paradigm for understanding self-assembly in chemical and materials systems. However, its connection to diffusion-limited aggregation (DLA) remains underexplored. Here, we present the first quantitative demonstration of RDF-driven fractal crystallization of benzoic acid (BA), revealing a direct correlation among fractal dimension, diffusion rate, and gel-matrix chemistry.
View Article and Find Full Text PDFBiomed Eng Lett
September 2025
Department of Anesthesiology and Pain Medicine, Brain Korea 21 Project, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpagu, 05505 Seoul, Republic of Korea.
Heart sounds provide essential information about cardiac function; however, their clinical meaning and potential for minimally invasive hemodynamic monitoring in real world clinical settings remain underexplored. This study assessed relationships between heart sound indices and hemodynamic parameters during liver transplant surgery. Data from 80 liver transplant recipients were analyzed across five procedural phases (approximately 1,680k cardiac beats).
View Article and Find Full Text PDF