98%
921
2 minutes
20
Background: Vibrio vulnificus (Vv) is an estuarine bacterium that can cause primary septicemia as well as serious wound infections. However, little is known about the mechanisms by which Vv infects dendritic cells (DCs) and its effects on cytoskeleton. In this study, we aimed to investigate the invasion, internalization, and the organelles damage of the cultured dendritic cells (a DC 2.4 strain) during Vv infection.
Methods: The study model was the cultured DCs infected by a Vv 1.758 strain. Electron microscopy was used to observe the localization of bacteria at the different time points of infection, cell morphology, and the process of organelles changes. The cytoskeleton structure including the microfilaments and the microtubules rearrangement was examined under a fluorescence microscope.
Results: The Vv were pinocytosised into the DC cells through double-sides, and localized at 1 - 2 mm of the inner side membrane. It took 1.3, 1.9, and 3.4 hours to reach the infection ratio of 25%, 50%, and 75%, respectively. Using electron microscopy, the DCs had been observed to have developed chromatin aggregation within 4.0 hours, and significant cytoskeleton structure disruption was noted within 6.0 hours.
Conclusion: The high lethality of Vv infection may be associated with the direct disruption of the DCs cytoskeleton structure.
Download full-text PDF |
Source |
---|
PLoS Pathog
September 2025
Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, Australia.
Dendritic cells (DCs) are potent antigen-presenting cells and play a key role in facilitating the sexual transmission of HIV, functioning as a delivery system responsible for trafficking the virus from exposed barrier sites to their key target cells, CD4 T cells. Although the role of DCs in HIV transmission is well established, the recent advent of high-parameter, single-cell detection technologies, coupled with improved cell isolation techniques, has led to the rapid reclassification of the DC landscape, particularly within human barrier tissues. The identification of new subsets introduces the challenge of incorporating previously understood transmission principles with new, cell-specific, functional nuances to identify the key DCs responsible for facilitating HIV infection.
View Article and Find Full Text PDFAnn Hematol
September 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.
Chimeric antigen receptor (CAR) therapies have demonstrated remarkable clinical efficacy in hematological malignancies, validating their therapeutic potential. However, challenges such as therapeutic resistance and limited accessibility hinder their broader application. To overcome these limitations, alternative CAR-based cell therapies, including CAR-Natural Killer (CAR-NK), CAR-macrophage (CAR-M), and CAR-dendritic cell (CAR-DC) therapies, have been proposed.
View Article and Find Full Text PDFBiomater Sci
September 2025
Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.
Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Gastroenterology, Jinhua Central Hospital, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China.
The fourth leading cause of cancer-related fatalities in the USA is pancreatic ductal adenocarcinoma (PDAC), a particularly deadly illness that is resistant to immunotherapy. One of the Main Obstacles in cancer research is developing better treatments for PDAC, which has the lowest 5-year survival rate of any malignancy. Anti-CTLA-4, anti-PD-L1, and anti-PD-1 immune checkpoint blockade medications also have poor results in these patients, which may indicate the presence of other immunosuppressive mechanisms in the pancreatic tumor microenvironment (TME).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia.
Purpose: To characterize corneal immune cell morphodynamics and nerve features, and define the in vivo immune landscape in older adults with human immunodeficiency virus (HIV) receiving antiretroviral therapy (ART), relative to healthy age-matched adults.
Methods: In this cross-sectional study, 16 HIV-positive individuals receiving ART and 15 age-matched controls underwent ocular surface examinations and functional in vivo confocal microscopy (Fun-IVCM). Time-lapsed videos were created to analyze corneal immune cells (T cells, dendritic cells [DCs], macrophages).