98%
921
2 minutes
20
Molecular characterization of 117 Bacillus thuringiensis (Bt) isolates from various geographical locations was previously done by PCR amplification of cry genes. In present investigation, diversity of cry genes from different soil types and climatic environments was studied using rarefaction method. Presence of cry1, cry2, cry3, 7, 8, cry4, cry5, 12, 14, 21, cry11, cry13 and cyt1 genes from Bt strains isolated from various regions of India was determined by PCR amplification. A varied distribution of cry genes and their profiles was found in four soil types. The cry1 gene was the most abundant in the isolates from four soil types and geographical regions. A higher degree of cry gene diversity was observed in isolates from alluvial soil. Rarefaction analysis indicated that more cry genes could be found from various soil types. Distribution of cry genes in semi arid, subtropical humid and tropical dry regions was varied but the degree of cry gene diversity determined by rarefaction analysis was similar. No major difference in distribution and diversity of cry genes was found in agricultural and non-agricultural samples except the absence of cry3 and cry13 genes in isolates of non-agricultural samples. We report the utility of rarefaction analysis to compare cry gene diversity from different geographical regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2012.10.008 | DOI Listing |
Biotechnol Lett
September 2025
Unit of Microbiology and Immunology, Vector Control Research Centre, Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Puducherry, 605006, India.
Effective mosquito control is essential for reducing the transmission of vector-borne diseases. This study focuses on the comprehensive characterization of mosquitocidal toxins produced by Bacillus thuringiensis serovar israelensis (Bti) VCRC B646 and the associated insecticidal genes. The bacterium was cultured, and the spore-crystal complex was purified to identify the mosquitocidal proteins.
View Article and Find Full Text PDFPest Manag Sci
September 2025
State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
Background: Bacillus thuringiensis (Bt) insecticidal proteins, including crystalline (Cry) proteins and vegetative insecticidal proteins (Vips), are extensively used in transgenic crops due to their efficacy, low environmental impact, and safety. The fall armyworm, Spodoptera frugiperda, has evolved practical resistance to Cry1Fa, yet no practical resistance to Vip3Aa has been documented. However, both laboratory selection and field screen studies indicate a high potential for this pest to evolve resistance to Vip3Aa, making it crucial to evaluate potential resistance genes.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2025
State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Agricultural University of Hebei, Baoding 071001, Hebei, China.
Red and blue light are the primary spectra absorbed by photosynthetic pigments in plants. Through the signal pathways mediated by phytochromes (PHY) and cryptochromes (CRY)/phototropins (PHOT), they coope-ratively regulate photosynthetic carbon assimilation, and plant growth and development. We reviewed the regulatory mechanisms of red and blue light on photosynthetic characteristics and plant growth and development.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Bacillus thuringiensis (Bt) is an insect pathogen that primarily relies on pore-forming toxins known as Cry proteins to kill its insect larval hosts. The effectiveness of Cry proteins has driven a worldwide search for Bt strains to identify and characterize novel insecticidal proteins with different specificities. In this study, Bt genome analysis revealed two consecutive open reading frames that are highly similar to the N-terminal of Cry14Aa1 and the C-terminal of Cry21Ca2, both of which target nematodes.
View Article and Find Full Text PDFSheng Li Xue Bao
August 2025
School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China.
The circadian rhythm regulates the 24-hour physiological and behavioral cycles through endogenous molecular clocks governed by core clock genes via the transcription-translation feedback loop (TTFL). In mammals, the suprachiasmatic nucleus (SCN) serves as the central pacemaker, coordinating the timing of physiological processes throughout the body by regulating clock genes such as CLOCK, BMAL1, PER, and CRY. The molecular clocks of peripheral tissues and cells are synchronized by the SCN through TTFLs to regulate metabolism, immunity, and energy homeostasis.
View Article and Find Full Text PDF