98%
921
2 minutes
20
The 5'UnTranslated Region (5'UTR) of HIV-1 genomic RNA, which precedes the Gag coding sequence, fulfills several roles during the lentivirus life cycle. This 335 nucleotides leader contains many stable structures that are crucial for the regulation of genetic expression at the level of transcription, splicing, and translation. In the late steps of the virus cycle, i.e. virions formation, the genomic RNA serves as propagated genome and its encapsidation in new particles relies on its ability to form non-covalent dimers. Dimerization is proposed to be initiated by the intermolecular pairing of a self-complementary sequence located in the apical loop of the DIS hairpin (Dimer Initiation Sequence). The regulation of this phenomenon and the extraordinary stability of the dimers imply that structural elements other than this kissing complex remain to be identified. Here, we show that swapping the Gag open reading frame (ORF) by reporter genes interferes with dimers formation efficiency. Importantly, the nature of the ORF alters specific structures of the 5'UTR. By using a systematic "SHAPE" approach, we pointed out that sequences within the Major Splice Site are involved in the dimerization process. Furthermore, by the use of an antisense oligonucleotide specific for the MSD associated to a SHAPE analysis of the 5'UTR structure, we demonstrated that interfering with the MSD results both in an impaired dimerization and in modifications of the 5'UTR structure. All together these data support a recently proposed model in which intramolecular base pairings are important determinants for the dimerization process. We further conclude that much care should be taken when comparing translation activity of reporter constructs with the viral situation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2012.02.009 | DOI Listing |
Genome Biol
September 2025
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611730, China.
Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Sanitz, 18190, Germany.
Low-cost and high-throughput RNA sequencing data for barley RILs achieved GP performance comparable to or better than traditional SNP array datasets when combined with parental whole-genome sequencing SNP data. The field of genomic selection (GS) is advancing rapidly on many fronts including the utilization of multi-omics datasets with the goal of increasing prediction ability and becoming an integral part of an increasing number of breeding programs ensuring future food security. In this study, we used RNA sequencing (RNA-Seq) data to perform genomic prediction (GP) on three related barley RIL populations.
View Article and Find Full Text PDFNat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNature
September 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA.
Individuals with progressive liver failure risk dying without liver transplantation. However, our understanding of why regenerative responses are disrupted in failing livers is limited. Here, we perform multiomic profiling of healthy and diseased human livers using bulk and single-nucleus RNA- and ATAC-seq.
View Article and Find Full Text PDF