Alternative transcription start sites (TSS) are widespread in eukaryotes and can alter the 5' UTR length and coding potential of transcripts. Here we show that inorganic phosphate (Pi) availability regulates the usage of several alternative TSS in Arabidopsis (Arabidopsis thaliana). In comparison to phytohormone treatment, Pi had a pronounced and specific effect on the usage of many alternative TSS.
View Article and Find Full Text PDFOnco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids.
View Article and Find Full Text PDFThis work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression.
View Article and Find Full Text PDFA large portion of eukaryotic genes are associated with noncoding, natural antisense transcripts (NATs). Despite sharing extensive sequence complementarity with their sense mRNAs, mRNA-NAT pairs elusively often evade dsRNA-cleavage and siRNA-triggered silencing. More surprisingly, some NATs enhance translation of their sense mRNAs by yet unknown mechanism(s).
View Article and Find Full Text PDFPlant Physiol
July 2020
Inorganic orthophosphate (Pi) is an essential nutrient for plant growth, and its availability strongly impacts crop yield. PHOSPHATE1 (PHO1) transfers Pi from root to shoot via Pi export into root xylem vessels. In this work, we demonstrate that an upstream open reading frame (uORF) present in the 5' untranslated region of the Arabidopsis () inhibits its translation and influences Pi homeostasis.
View Article and Find Full Text PDFTranscription termination has important regulatory functions, impacting mRNA stability, localization and translation potential. Failure to appropriately terminate transcription can also lead to read-through transcription and the synthesis of antisense RNAs which can have profound impact on gene expression. The Transcription-Export (THO/TREX) protein complex plays an important role in coupling transcription with splicing and export of mRNA.
View Article and Find Full Text PDFTranscript elongation factors associate with elongating RNA polymerase II (RNAPII) to control the efficiency of mRNA synthesis and consequently modulate plant growth and development. Encountering obstacles during transcription such as nucleosomes or particular DNA sequences may cause backtracking and transcriptional arrest of RNAPII. The elongation factor TFIIS stimulates the intrinsic transcript cleavage activity of the polymerase, which is required for efficient rescue of backtracked/arrested RNAPII.
View Article and Find Full Text PDFBackground: Long intergenic non-coding RNAs (lincRNAs) can act as regulators of expression of protein-coding genes. Trans-natural antisense transcripts (trans-NATs) are a type of lincRNAs that contain sequence complementary to mRNA from other loci. The regulatory potential of trans-NATs has been poorly studied in eukaryotes and no example of trans-NATs regulating gene expression in plants are reported.
View Article and Find Full Text PDFCis-Natural Antisense Transcripts (cis-NATs), which overlap protein coding genes and are transcribed from the opposite DNA strand, constitute an important group of noncoding RNAs. Whereas several examples of cis-NATs regulating the expression of their cognate sense gene are known, most cis-NATs function by altering the steady-state level or structure of mRNA via changes in transcription, mRNA stability, or splicing, and very few cases involve the regulation of sense mRNA translation. This study was designed to systematically search for cis-NATs influencing cognate sense mRNA translation in Arabidopsis ().
View Article and Find Full Text PDFEukaryotic mRNAs frequently contain upstream open reading frames (uORFs), encoding small peptides that may control translation of the main ORF (mORF). Here, we report the characterization of a distinct bicistronic transcript in Arabidopsis. We analysed loss-of-function phenotypes of the inorganic polyphosphatase TRIPHOSPHATE TUNNEL METALLOENZYME 3 (AtTTM3), and found that catalytically inactive versions of the enzyme could fully complement embryo and growth-related phenotypes.
View Article and Find Full Text PDFIn the late phase of the HIV virus cycle, the unspliced genomic RNA is exported to the cytoplasm for the necessary translation of the Gag and Gag-pol polyproteins. Three distinct translation initiation mechanisms ensuring Gag production have been described with little rationale for their multiplicity. The Gag-IRES has the singularity to be located within Gag ORF and to directly interact with ribosomal 40S.
View Article and Find Full Text PDFAs obligatory intracellular parasites, viruses rely on cellular machines to complete their life cycle, and most importantly they recruit the host ribosomes to translate their mRNA. The Hepatitis C viral mRNA initiates translation by directly binding the 40S ribosomal subunit in such a way that the initiation codon is correctly positioned in the P site of the ribosome. Such a property is likely to be central for many viruses, therefore the description of host-pathogen interaction at the molecular level is instrumental to provide new therapeutic targets.
View Article and Find Full Text PDFThe accuracy of start codon selection is determined by the translation initiation process. In prokaryotes the initiation step on most mRNAs relies on recruitment of the small ribosomal subunit onto the initiation codon by base pairing between the mRNA and the 16S rRNA. Eukaryotes have evolved a complex molecular machinery involving at least 11 initiation factors, and mRNAs do not directly recruit the small ribosomal subunit.
View Article and Find Full Text PDFInitiation of translation on Type II IRESs, such as those of EMCV and FMDV viruses, has been well documented in the recent years. For EMCV, the current model argues for a mechanism in which the key interaction necessary for the pre-initiation complex recruitment is eIF4G binding to the central J-K domains of EMCV-IRES. Here we demonstrate that, in contrast with the current model, the molecular mechanism of EMCV-IRES involves direct recruitment of the 40S subunit.
View Article and Find Full Text PDFViroids are small pathogenic circular single-stranded RNAs, present in two complementary sequences, named plus and minus, in infected plant cells. A high degree of complementarities between different regions of the RNAs allows them to adopt complex structures. Since viroids are naked non-coding RNAs, interactions with host factors appear to be closely related to their structural and catalytic characteristics.
View Article and Find Full Text PDFThe 5'UnTranslated Region (5'UTR) of HIV-1 genomic RNA, which precedes the Gag coding sequence, fulfills several roles during the lentivirus life cycle. This 335 nucleotides leader contains many stable structures that are crucial for the regulation of genetic expression at the level of transcription, splicing, and translation. In the late steps of the virus cycle, i.
View Article and Find Full Text PDFThe 5' leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA harbors an internal ribosome entry site (IRES) that is functional during the G2/M phase of the cell cycle. Here we show that translation initiation mediated by the HIV-1 IRES requires the participation of trans-acting cellular factors other than the canonical translational machinery. We used 'standard' chemical and enzymatic probes and an 'RNA SHAPE' analysis to model the structure of the HIV-1 5' leader and we show, by means of a footprinting assay, that G2/M extracts provide protections to regions previously identified as crucial for HIV-1 IRES activity.
View Article and Find Full Text PDFNucleic Acids Res
April 2011
Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein.
View Article and Find Full Text PDF