Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vesicular stomatitis virus (VSV), a negative-sense single-stranded-RNA rhabdovirus, is an extremely promising oncolytic agent for cancer treatment. Since oncolytic virotherapy is moving closer to clinical application, potentially synergistic combinations of oncolytic viruses and molecularly targeted antitumor agents are becoming a meaningful strategy for cancer treatment. Mitogen-activated protein kinase (MAPK) inhibitors have been shown to impair liver cell proliferation and tumor development, suggesting their potential use as therapeutic agents for hepatocellular carcinoma (HCC). In this work, we show that the impairment of MAPK in vitro did not interfere with the oncolytic properties of VSV in HCC cell lines. Moreover, the administration of MAPK inhibitors did not restore the responsiveness of HCC cells to alpha/beta interferon (IFN-α/β). In contrast to previous reports, we show that JNK inhibition by the inhibitor SP600125 is not responsible for VSV attenuation in HCC cells and that this compound acts by causing a posttranslational modification of the viral glycoprotein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347359PMC
http://dx.doi.org/10.1128/JVI.06649-11DOI Listing

Publication Analysis

Top Keywords

posttranslational modification
8
vesicular stomatitis
8
stomatitis virus
8
jnk inhibition
8
cancer treatment
8
mapk inhibitors
8
hcc cells
8
modification vesicular
4
virus glycoprotein
4
glycoprotein jnk
4

Similar Publications

Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.

View Article and Find Full Text PDF

Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.

Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.

View Article and Find Full Text PDF

Lactylation as a metabolic-epigenetic nexus in epilepsy: Mechanisms and therapeutic implications.

Neurobiol Dis

September 2025

Department of Neurology, The Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi 563000, Guizhou, PR China; Key Laboratory of Brain Function and Brain Disease Prevention and Treatment of Guizhou Province, Zunyi 563000, Guizhou, PR China; The Collaborative Innovation Center of Tis

Lactylation is a novel post-translational modification (PTM) mediated by lactate, which dynamically regulates protein functions and gene expression by covalently attaching lactate groups to lysine residues. Recent studies have shown that abnormal lactate metabolism not only contributes to the pathogenesis of epilepsy through microenvironment acidification but also influences neuroinflammation, energy metabolism imbalance, neurotransmitter dysregulation, synaptic plasticity, and epigenetic regulation via lactylation. This positions lactylation as a critical metabolic-epigenetic intersection in the pathological mechanisms of epilepsy.

View Article and Find Full Text PDF

The role of protein glycosylation in colorectal cancer: From molecular pathways to clinical applications.

Biochim Biophys Acta Rev Cancer

September 2025

Integrated Traditional Chinese and Western Medicine In Proctology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, Henan Province, China. Electronic address:

Glycosylation, a pivotal post-translational modification, critically influences colorectal cancer (CRC) progression via dysregulated N- and O-linked pathways, characterized by oligomannose, fucosylation, hypersialylation, truncated O-glycans (Tn, sialyl-Tn), branched N-glycans, and Lewis antigens. These alterations promote tumor aggressiveness, immune evasion, and metastasis through glycoprotein remodeling (e.g.

View Article and Find Full Text PDF

Introduction: Lactate has emerged as a multifunctional signaling molecule regulating various physiological and pathological processes. Furthermore, lactylation, a newly identified posttranslational modification triggered by lactate accumulation, plays significant roles in human health and diseases. This study aims to investigate the roles of lactate/lactylation in respiratory diseases.

View Article and Find Full Text PDF