Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoparticles of Ti(0.95)V(0.05)O(2) were found to be impregnated in the hexagonal channels of the MCM-41 host, with a distribution of some particles on the surface, thus leading to an effective variation in the particle size as a function of loading host MCM-41 matrix. These catalysts were subjected to the photocatalytic degradation of alkenes under the ambient conditions in which the photocatalytic activity varied as a function of the loading percentage of Ti(0.95)V(0.05)O(2) in the host MCM-41.This is explained in light of the structure-activity correlation, and the better catalytic activity can be attributed to an electronic interaction between the host and guest molecules, as established from X-ray photoelectron spectroscopy. To understand the mechanistic aspect of the photooxidation of ethylene on the vanadium-doped titania dispersed in the MCM-41 matrix, extensive in situ FTIR experiments were undertaken. The intermediate species produced on bare Ti(0.95)V(0.05)O(2) are different from that produced on the Ti(0.95)V(0.05)O(2)/MCM-41 surface. Moreover, different intermediates were produced during ethylene oxidation under UV and visible irradiation, thus leading to different rates. The ethylene decomposition over bare Ti(0.95)V(0.05)O(2) occurs by means of formation of ethoxy groups, transformed to acetaldehyde or enolates, subsequently to acetates, and then to CO(2) under both UV and visible irradiation. However, in the case of Ti(0.95)V(0.05)O(2)/MCM-41 catalyst with UV irradiation, the adsorbed acetaldehyde thus formed undergoes aldol condensation over the Lewis acid sites to lead to the formation of crotonaldehyde, which is subsequently oxidized to acetate and consequently to CO(2). It was observed that during visible irradiation labile ethyl acetate is produced either by the Tischenko reaction or by the reaction between the labile acetic acid and the unreacted ethoxy groups. The ethyl acetate produces acetic acid monomer, which is oxidized to CO(2). Furthermore, in this work the effects of particle size on the intermediate species were also studied.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201001121DOI Listing

Publication Analysis

Top Keywords

visible irradiation
12
structure-activity correlation
8
particle size
8
function loading
8
mcm-41 matrix
8
intermediate species
8
bare ti095v005o2
8
ethoxy groups
8
ethyl acetate
8
acetic acid
8

Similar Publications

Micro-Strain Responsive Near-Infrared Mechanoluminescence for Potential Nondestructive Artificial Joint Stress Imaging.

Adv Mater

September 2025

Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.

Recently, joint replacement surgery is facing significant challenges of patient dissatisfaction and the need for revision procedures. In-situ monitoring of stress stability at the site of artificial joint replacement during postoperative evaluation is important. Mechanoluminescence (ML), a novel "force to light" conversion technology, may be used to monitor such bio-stress within tissues.

View Article and Find Full Text PDF

While photoisomerization has dominated the design of photoswitchable catalysts, this work introduces an alternative approach: leveraging light-induced photodimerization to assemble catalytically active species. The adopted strategy is based on a acrylamidylpyrene derivative equipped with a TACN·Zn(ii) catalytic unit. This system undergoes a visible-light-induced [2 + 2] cycloaddition, which is both regioselective and reversible, to form a catalytically active photodimer.

View Article and Find Full Text PDF

A dual-engineered covalent organic framework with charge-oxygen synergy promotes photocatalytic dipolar [3 + 2] cycloaddition.

Chem Sci

August 2025

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Institute of Life Science and Green Development Hebei University Baoding Hebei 071002 P. R. China

The photocatalytic oxidative dipolar [3 + 2] cycloaddition reaction is a promising green approach for producing pyrrolo[2,1-]isoquinolines. However, developing sustainable cycloaddition methods with heterogeneous photocatalysts is still in its infancy, largely owing to their low reactivity and photostability. Herein, we propose a charge-oxygen synergy strategy through a dual-engineered covalent organic framework (COF) by integrating π-spacers with donor-acceptor motifs to promote intermolecular cycloaddition.

View Article and Find Full Text PDF

Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.

View Article and Find Full Text PDF

Efficient and low-cost removal of dissolved organic phosphorus by visible light-enhanced Ti electrocoagulation with self-generated rutile photocatalysts.

Water Res

August 2025

State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Phosphorus is recognized as a major pollutant in municipal and domestic wastewater, but the effective removal of organic phosphorus (OP) using conventional wastewater treatment technologies is difficult. Herein, a novel visible light-enhanced Ti electrocoagulation (EC) technology was proposed for the removal of OP using 2-amino-ethyl phosphonic acid (AEP) as a model compound to elucidate the removal efficiency and mechanisms. The results showed that the irradiation under visible light (670 Lux) effectively enhanced the removal of AEP by Ti EC.

View Article and Find Full Text PDF