Silica nanoparticles based label-free aptamer hybridization for ATP detection using hoechst33258 as the signal reporter.

Biosens Bioelectron

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Research Center for Nanobiology and Nanomedicine (MOE 985 Innovative Platform), Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, PR China.

Published: November 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we have developed a simple and sensitive method for ATP detection using silica nanoparticles (NPs) as the platform and hoechst33258 as the signal reporter. The ATP-binding aptamers hybridize with the probe DNA (DNA(p)) immobilized NPs to form the aptamer/DNA(p) duplex on the NPs surface. The conformational change of the aptamer leads to the decrease of the aptamer/DNA(p) duplex on the NPs due to the ATP-binding aptamer switches its structure from the aptamer/DNA(p) duplex to the aptamer/target complex in the presence of ATP. ATP detection can be easily realized by separating the silica nanoparticles and adding the hoechst33258 of intercalating to aptamer/DNA(p) (dsDNA). Good selectivity between ATP and CTP, GTP or UTP has been demonstrated, which is due to the specific recognition between ATP aptamer and ATP. The K(d) was estimated to be ∼1mM from 0 to 4mM and a liner response was observed from 0 to 0.2mM with a detection limit of ∼20μM. Compared with other methods, the carboxyl-modified silica nanoparticles (∼60nm) prepared by the reverse microemulsion method can serve as a stable and sensitive sensor platform because of their smaller size and facile conjugation with amine-containing molecules. In addition, the high sensitivity and selectivity of hoechst33258 was employed for the ssDNA and dsDNA determination, which takes advantage of the label-free aptamer and lower cost.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2011.07.064DOI Listing

Publication Analysis

Top Keywords

silica nanoparticles
16
atp detection
12
aptamer/dnap duplex
12
label-free aptamer
8
hoechst33258 signal
8
signal reporter
8
duplex nps
8
atp
7
aptamer
5
silica
4

Similar Publications

Atherosclerosis is the leading cause of global cardiovascular morbidity and mortality associated with inflammatory and immunological mechanisms. Immunotherapy has demonstrated promising efficacy in the management of atherosclerosis. Nevertheless, certain immunotherapeutic approaches are associated with limitations, including suboptimal efficacy and non-negligible adverse effects.

View Article and Find Full Text PDF

Streptococcosis, caused by , is a significant disease in tilapia farming that results in substantial economic losses. While vaccination is the most effective method for prevention, current vaccines face challenges when administered orally or through immersion, primarily due to poor absorption and degradation in the fish's digestive system. Nanotechnology offers new ways to improve vaccine delivery and effectiveness.

View Article and Find Full Text PDF

Brown root rot, caused by Phellinus noxius, is a major threat to rubber tree cultivation, resulting in substantial economic losses. Traditional control methods, such as root irrigation with fungicides, are labor-intensive, water-consuming, and inefficient, particularly in regions with limited water resources. This study introduces fluorescent mesoporous silica nanoparticles (FL-MSNs) as a novel delivery platform for tebuconazole to target P.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Objectives: Antibiotic resistance towards penicillin has been attempted to counter by chemically modifying ampicillin through the conjugation with silver nanoparticles (AgNPs). The current study optimizes the conditions for synthesizing and characterizing AgNP-ampicillin to quantify the conjugation extent, evaluate the antibacterial efficacy, and explore the underlying antibacterial mechanisms.

Materials And Methods: AgNPs were synthesized from silver nitrate by chemical reduction method, silica-coated with tetraethyl orthosilicate (TEOS) and amine functionalized by (3-aminopropyl) triethoxysilane (APTES), which was then conjugated with ampicillin via the carbodiimide chemistry.

View Article and Find Full Text PDF