Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In budding yeast, the microtubule-organizing center is called the spindle pole body (SPB) and shares structural components with the centriole, the central core of the animal centrosome. During meiotic interphase I, the SPB is duplicated when DNA replication takes place. Duplicated SPBs are linked and then separate to form a bipolar spindle required for homolog separation in meiosis I. During interphase II, SPBs are duplicated again, in the absence of DNA replication, to form four SPBs that establish two spindles for sister-chromatid separation in meiosis II. Here, we report that the Aurora kinase Ipl1, which is necessary for sister-chromatid cohesion, is also required for maintenance of a tight association between duplicated SPBs during meiosis, which we term SPB cohesion. Premature loss of cohesion leads to SPB overduplication and the formation of multipolar spindles. By contrast, the Polo-like kinase Cdc5 is necessary for SPB duplication and interacts antagonistically with Ipl1 at the meiotic SPB to ensure proper SPB separation. Our data suggest that Ipl1 coordinates SPB dynamics with the two chromosome segregation cycles during yeast meiosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166035PMC
http://dx.doi.org/10.1242/jcs.086652DOI Listing

Publication Analysis

Top Keywords

aurora kinase
8
kinase ipl1
8
spindle pole
8
pole body
8
budding yeast
8
yeast meiosis
8
spb
8
dna replication
8
duplicated spbs
8
separation meiosis
8

Similar Publications

Introduction: Ovarian cancer (OC) is a malignancy of the female reproductive system for which cisplatin chemotherapy is one of the first-line treatments. Despite the initial response to chemotherapy, such patients eventually develop resistance, which poses a major obstacle to treatment, along with potential side effects. Phytochemicals function as chemosensitizers, offering novel therapies in OC patients by targeting drug resistance, and are perceived to be less toxic.

View Article and Find Full Text PDF

Mitosis in spp., the causative agent of malaria, is fundamentally different from model eukaryotes, proceeding via a bipartite microtubule organising centre (MTOC) and lacking canonical regulators such as Polo and Bub1 kinases. During schizogony, asynchronous nuclear replication produces a multinucleate schizont, while rapid male gametogony generates an octaploid nucleus before gamete formation.

View Article and Find Full Text PDF

A review: recent developments of co-targeted TRK (tropomyosin receptor kinases) inhibitors for cancer therapy.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Multi-targeted agents can sequentially act on two or more targets, leading to synergistic and more effective therapeutic effects against several complicated disorders, containing cancer, even with relatively modest action. The TRKs (tropomyosin receptor kinases) are confirmed as promising targets in anti-tumor drug discovery. Over the past 20 years, many small molecules TRK inhibitors have been identified, that some of them are being investigated in various clinical phases.

View Article and Find Full Text PDF

RNAi delivery mediated by milk extracellular vesicles in colon cancer.

Mol Ther Nucleic Acids

September 2025

IRCCS SYNLAB SDN, Via E. Gianturco 113, 80143 Napoli, Italy.

Small interfering RNA (siRNA) has emerged as a powerful tool for gene silencing, offering great potential for therapeutic applications. However, the clinical use of siRNA is limited by several challenges, including poor stability in biological fluids, off-target effects, and toxicity due to non-specific cellular uptake. To address these limitations, extracellular vesicles (EVs) derived from milk are being investigated as natural carriers to deliver siRNA and microRNA.

View Article and Find Full Text PDF

In -mutant melanoma cells treated with inhibitors of the kinases BRAF and MEK, a subset of cells rapidly and nongenetically adapts to escape drug-induced quiescence and reenters the cell cycle. Here, we investigated the mechanisms enabling this drug escape by computationally reconstructing single-cell lineages from time-lapse imaging data, linking dynamic signaling pathways to distinct cell-cycle fate outcomes. We found that reactivation of the MEK substrate ERK was necessary but not sufficient to drive escape; rather, the activity of the protein complex mTORC1 was also required to promote cell growth and protein synthesis in drug-treated cells destined for cell-cycle reentry.

View Article and Find Full Text PDF