Publications by authors named "Anna Maria Grimaldi"

Small interfering RNA (siRNA) has emerged as a powerful tool for gene silencing, offering great potential for therapeutic applications. However, the clinical use of siRNA is limited by several challenges, including poor stability in biological fluids, off-target effects, and toxicity due to non-specific cellular uptake. To address these limitations, extracellular vesicles (EVs) derived from milk are being investigated as natural carriers to deliver siRNA and microRNA.

View Article and Find Full Text PDF

The Chromobox (CBX) family comprises key epigenetic regulators involved in transcriptional repression through chromatin modifications. Dysregulation of polycomb CBX proteins has been linked to epigenetic gene silencing and cancer progression. However, the specific roles and prognostic value of CBX family members in colorectal cancer (CC) remain unclear.

View Article and Find Full Text PDF

Heart failure (HF) is among the most important causes of worldwide morbidity, hospitalisation, and mortality. A reduction in anabolic hormonal axes seems to potentially play an important role in chronic HF progression and prognosis. Several lines of evidence support the critical roles of miRNAs in the endocrine system, and differentially expressed miRNA patterns were found to be able to detect HF.

View Article and Find Full Text PDF

Background: Colon cancer and pancreatic ductal adenocarcinoma are among the most aggressive tumors for which therapeutic options are limited. Both cancers share common features, such as some KRAS pathogenic variants and common epidemiology. The integration of multidimensional datasets by combining machine learning and bioinformatics approaches could provide deeper insights into the intricate KRAS-related networks underlying cancer progression and unveil novel biomarkers and potential therapeutic targets.

View Article and Find Full Text PDF

Cancer participates in the immune response by releasing several factors, such as cytokines and chemokines, which can alter the ability of the immune system to identify and eradicate cancer. Notably, the role of thymic stromal lymphopoietin (TSLP) in breast cancer (BC) is currently controversial and unclear. The present study characterized the role of TSLP in BC and its interaction with peripheral blood mononuclear cells, focusing on the CD14CD16 monocyte population via the secretome released by BC cells.

View Article and Find Full Text PDF

Biobanks are valuable service units that ensure the usage of high-quality biological samples. They contribute to translational research, and their support may improve future therapeutic approaches. They store biological samples that can be used to examine circulation biomarkers, immune cells, and immunohistochemistry aspects of illnesses and further in-depth examinations using NGS techniques.

View Article and Find Full Text PDF

Goat milk is a complex biological fluid, which in addition to having a high nutritional value, it is an interesting source of extracellular vesicles (EVs). Despite the countless potential applications that they offer in many biological fields, is not easy to compare the different proposed systems, and this is a major limitation for the real translatability of these natural nanoplatforms for theragnostic purposes. Thus, it is useful to further investigate reproducible methods to separate goat milk EVs.

View Article and Find Full Text PDF

Bladder cancer is the 10th most common cancer type worldwide. Cystoscopy represents the gold standard for bladder cancer diagnosis, but this procedure is invasive and painful, hence the need to identify new biomarkers through noninvasive procedures. microRNAs (miRNAs) are considered to be promising diagnostic molecules, because they are very stable in biological fluids (including urine) and easily detectable.

View Article and Find Full Text PDF

The biological function and clinical values of Chromobox (CBX) family proteins in renal cell carcinoma (RCC) are still poorly investigated. This study aimed to compare the expression profiles and clinical relevance of CBXs between the two most frequent subtypes of RCC, clear cell renal cell carcinomas (ccRCC) and papillary renal cell carcinomas (pRCC), and to investigate whether CBXs would play a more or less similar role in the pathogenesis and progression of these RCC subtypes. Considering these two RCC populations in the TCGA database, we built a bioinformatics framework by integrating a computational pipeline with several online tools.

View Article and Find Full Text PDF

Big data processing, using omics data integration and machine learning (ML) methods, drive efforts to discover diagnostic and prognostic biomarkers for clinical decision making. Previously, we used the TCGA database for gene expression profiling of breast, ovary, and endometrial cancers, and identified a top-scoring network centered on the gene, which plays a crucial role in carcinogenesis in the three estrogen-dependent tumors. Here, we focused on microRNA expression signature similarity, asking whether they could target the family.

View Article and Find Full Text PDF

Background: The clinical behavior of prostate cancer is highly heterogeneous, with most patients diagnosed with localized disease that successfully responds to surgery or radiotherapy. However, a fraction of men relapse after initial treatment because they develop drug resistance. The failure of anticancer drugs leaves resistant cancer cells to survive and proliferate, negatively affecting patient survival.

View Article and Find Full Text PDF

Background: Triple-negative breast cancers (TNBCs) display poor prognosis, have a high risk of tumour recurrence, and exhibit high resistance to drug treatments. Based on their gene expression profiles, the majority of TNBCs are classified as basal-like breast cancers. Currently, there are not available widely-accepted prognostic markers to predict outcomes in basal-like subtype, so the selection of new prognostic indicators for this BC phenotype represents an unmet clinical challenge.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is the most common cancer in females and despite advances in treatment, it represents the leading cause of cancer mortality in women worldwide. Conventional therapeutic modalities have significantly improved the management of BC patients, but subtype heterogeneity, drug resistance, and tumor relapse remain the major factors to hamper the effectiveness of therapy for BC. In this scenario, miRNA(miR)-based therapeutics offer a very attractive area of study.

View Article and Find Full Text PDF

Nanoparticles (NPs) are promising platforms for the development of diagnostic and therapeutic tools. One of the main hurdle to their medical application and translation into the clinic is the fact that they accumulate in the spleen and liver due to opsonization and scavenging by the mononuclear phagocyte system. The "protein corona" controls the fate of NPs in vivo and becomes the interface with cells, influencing their physiological response like cellular uptake and targeting efficiency.

View Article and Find Full Text PDF

Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules.

View Article and Find Full Text PDF

There is an unmet need for novel non-invasive prognostic molecular tumour markers for breast cancer (BC). Accumulating evidence shows that miR-155 plays a pivotal role in tumorigenesis. Generally, miR-155 is considered an oncogenic miRNA promoting tumour growth, angiogenesis and aggressiveness of BC.

View Article and Find Full Text PDF

The goal of this review is to provide an overview of the studies aimed at integrating imaging parameters with molecular biomarkers for improving breast cancer patient's diagnosis and prognosis. The use of diagnostic imaging to extract quantitative parameters related to the morphology, metabolism, and functionality of tumors, as well as their correlation with cancer tissue biomarkers is an emerging research topic. Thanks to the development of imaging biobanks and the technological tools required for extraction of imaging parameters including radiomic features, it is possible to integrate imaging markers with genetic data.

View Article and Find Full Text PDF

Nowadays, natural polysaccharides have given promising results as drug carriers. Among them, the hydrogels, thanks to their versatile properties, have been produced and engineered at the nano-scale in order to develop nanovectors for diagnostic and therapeutic purposes. Here, we investigate the contribution that a natural biopolymer, hyaluronic acid (HA), can give to the field of Magnetic Resonance Imaging (MRI).

View Article and Find Full Text PDF

The effective management of patients with breast cancer (BC) depends on the early diagnosis of the disease. Currently, BC diagnosis is based on diagnostic imaging and biopsy, while the use of non-invasive circulating biomarkers for diagnosis remains an unmet need. Among the plethora of proposed non-invasive biomarkers, circulating microRNAs (miRNAs) have been considered promising diagnostic molecules because they are very stable in biological fluids and easily detectable.

View Article and Find Full Text PDF

The aim of this study was to identify new disease-related circulating miRNAs with high diagnostic accuracy for breast cancer (BC) and to correlate their deregulation with the morpho-functional characteristics of the tumour, as assessed in vivo by positron emission tomography/magnetic resonance (PET/MR) imaging. A total of 77 untreated female BC patients underwent same-day PET/MR and blood collection, and 78 healthy donors were recruited as negative controls. The expression profile of 84 human miRNAs was screened by using miRNA PCR arrays and validated by real-time PCR.

View Article and Find Full Text PDF

Background: The aim of the present review is to discuss how the promising field of biobanking can support health care research strategies. As the concept has evolved over time, biobanks have grown from simple biological sample repositories to complex and dynamic units belonging to large infrastructure networks, such as the Pan-European Biobanking and Biomolecular Resources Research Infrastructure (BBMRI). Biobanks were established to support scientific knowledge.

View Article and Find Full Text PDF

Recently, rational design of a new class of contrast agents (CAs), based on biopolymers (hydrogels), have received considerable attention in Magnetic Resonance Imaging (MRI) diagnostic field. Several strategies have been adopted to improve relaxivity without chemical modification of the commercial CAs, however, understanding the MRI enhancement mechanism remains a challenge. A multidisciplinary approach is used to highlight the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA.

View Article and Find Full Text PDF

Cardiac Magnetic Resonance (CMR), thanks to high spatial resolution and absence of ionizing radiation, has been widely used in myocardial infarction (MI) assessment to evaluate cardiac structure, function, perfusion and viability. Nevertheless, it suffers from limitations in tissue and assessment of myocardial pathophysiological changes subsequent to MI. In this issue, nanoparticle-based contrast agents offer the possibility to track biological processes at cellular and molecular level underlying the various phases of MI, infarct healing and tissue repair.

View Article and Find Full Text PDF

Purpose: The aim of this study was to determine if functional parameters extracted from the hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) correlate with the immunohistochemical markers of breast cancer (BC) lesions, to assess their ability to predict BC subtype.

Methods: This prospective study was approved by the institution's Ethics Committee, and all patients provided written informed consent. A total of 50 BC patients at diagnosis underwent PET/MRI before pharmacological and surgical treatment.

View Article and Find Full Text PDF

Breast cancer is a disease affecting an increasing number of women worldwide. Several efforts have been made in the last years to identify imaging biomarker and to develop noninvasive diagnostic tools for breast tumor characterization and monitoring, which could help in patients' stratification, outcome prediction, and treatment personalization. In particular, radiomic approaches have paved the way to the study of the cancer imaging phenotypes.

View Article and Find Full Text PDF