Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability of Turkish illitic clay (TIC) in removal of Cd(II) and Pb(II) ions from aqueous solutions has been examined in a batch adsorption process with respect to several experimental conditions including initial solution pH, contact time, initial metal ions concentration, temperature, ionic strength, and TIC concentration, etc. The characterization of TIC was performed by using FTIR, XRD and XRF techniques. The maximum uptake of Cd(II) (11.25 mg g(-1)) and Pb(II) (238.98 mg g(-1)) was observed when used 1.0 g L(-1) of TIC suspension, 50 mg L(-1) of initial Cd(II) and 250 mg L(-1) of initial Pb(II) concentration at initial pH 4.0 and contact time of 240 min at room temperature. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin Radushkevich (D-R) isotherm models. The monolayer adsorption capacity of TIC was found to be 13.09 mg g(-1) and 53.76 mg g(-1) for Cd(II) and Pb(II) ions, respectively. The kinetics of the adsorption was tested using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The results showed that the adsorption of Cd(II) and Pb(II) ions onto TIC proceeds according to the pseudo-second-order model. Thermodynamic parameters including the Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) changes indicated that the present adsorption process was feasible, spontaneous and endothermic in the temperature range of 5-40 °C.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2011.07.022DOI Listing

Publication Analysis

Top Keywords

cdii pbii
16
pbii ions
16
removal cdii
8
ions aqueous
8
aqueous solutions
8
turkish illitic
8
illitic clay
8
adsorption process
8
contact time
8
cdii
6

Similar Publications

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

Remediation of heavy metal pollution is essential for safeguarding ecological integrity and public health. The present work aimed to prepare a novel biochar from leaves (EC-biochar) for the effective removal of Cd and Pb cations, as representative heavy metals, from aqueous solutions. The adsorption performance of Cd and Pb cations by EC-biochar was assessed by varying different operating parameters ( pH, temperature, EC-biochar dose, adsorption time, and adsorbate concentration).

View Article and Find Full Text PDF

This study assessed the health risks of heavy metal contamination in groundwater in Siwa Oasis, Egypt's northwestern desert, and their potential decontamination using a marble-based nanoporous Ca-MCM-41 structure as an adsorbent. Fe, Cd, Cr, Pb, and Mn contents exceeded World Health Organization (WHO) guidelines with potential non-carcinogenic risks and carcinogenic risks based on the hazard index (HI) and Monte Carlo simulations. Ca-MCM-41 showed significant performances in the removal of most of these toxic ions with batch saturation uptake capacities of 239 mg/g Cd(II), 252 mg/g Fe(II), 308 mg/g Pb(II), 132 mg/g Cr(VI), and 154.

View Article and Find Full Text PDF

The present study focuses on the synthesis of coconut shell-derived biochar (BC), molybdenum disulfide (MoS), and poly(acrylic acid) (PAA) (BC/MoS/PAA) composite. The composite was synthesized a simple hydrothermal method. The structural and morphological features of the resulting composite were thoroughly characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) surface analysis, and Raman spectroscopy.

View Article and Find Full Text PDF

Rapid, low-cost trace inorganic Hg(ii) detection in environmental waters remains a critical public-health challenge. Here, we engineered into a naked-eye whole-cell biosensor by coupling a redesigned MerR-P element to the pyomelanin biosynthetic pathway. Three 4-hydroxyphenylpyruvate dioxygenase (HppD) homologs from WS, 4AK4, and PAO1 were codon-optimized and functionally screened.

View Article and Find Full Text PDF